Skip to main content
Log in

A comprehensive computer simulation of the size-dependent sector or complete microsystem via two-dimensional generalized differential quadrature method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This article presents the mode shape and frequency analysis of graphene nanoplatelets reinforced composite (GPLRC) microdisk surrounded by viscoelastic foundation using a non-classical continuum theory called modified couple stress theory (MCST). The boundary conditions and non-classical governing equations of size-dependent GPLRC microstructure are derived by adding the higher-order stress and symmetric rotation gradient tensors to the strain energy. The current non-classical model is capable of capturing the size-dependency in the composite microsystem using only one material length scale parameter. Moreover, the mathematical formulation of the GPLRC microdisk based on the classical model can be recovered from the present model by neglecting the material length scale parameter. Finally, the generalized differential quadrature element method (GDQEM) is applied for solving the governing equations are solved using various sets of boundary conditions. Afterward, a parametric study is carried out to study the impacts of the radius ratio, length scale parameter, radial and circumferential mode number, geometry of GPLRC material, and boundary conditions on the frequency responses of the current microsystem by considering MCST. The results demonstrate that when the material length scale factor improves, the impact of the damping factor on the natural frequency of the microsystem decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li B-H, Liu Y, Zhang A-M, Wang W-H, Wan S (2020) A survey on blocking technology of entity resolution. J Comput Sci Technol 35(4):769–793

    Article  Google Scholar 

  2. Zhang J, Sun J, Chen Q, Zuo C (2020) Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Trans Comput Imaging 6:697–710

    Article  Google Scholar 

  3. Hu Y, Chen Q, Feng S, Zuo C (2020) Microscopic fringe projection profilometry: A review. Opt Lasers Eng 135:106192

    Article  Google Scholar 

  4. Hu J, Wang M, Zhao C, Pan Q, Du C (2020) Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Sci China Technol Sci 63(1):65–72

    Article  Google Scholar 

  5. Zhou Y, Tian L, Zhu C, Jin X, Sun Y (2019) Video coding optimization for virtual reality 360-degree source. IEEE J Select Topics Signal Process 14(1):118–129

    Article  Google Scholar 

  6. Wang B, Zhang B, Zou F, Xia Y (2021) A kind of improved quantum key distribution scheme. Optik 235:166628

    Article  Google Scholar 

  7. Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Article  Google Scholar 

  8. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25(2):382–389

    Article  Google Scholar 

  9. Jiménez-Suárez A, Prolongo S (2020) Graphene nanoplatelets. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/app10051753

    Book  Google Scholar 

  10. Guo Y, Mi H, Habibi M (2021) Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system. Mech Syst Signal Process 157:107723

    Article  Google Scholar 

  11. Al-Furjan MSH, Dehini R, Paknahad M, Habibi M, Safarpour H (2021) On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment. Arch Civ Mech Eng 21(1):4. https://doi.org/10.1007/s43452-020-00151-w

    Article  Google Scholar 

  12. Liu H, Shen S, Oslub K, Habibi M, Safarpour H (2021) Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity. Eng Comput. https://doi.org/10.1007/s00366-021-01316-8

    Article  Google Scholar 

  13. Al-Furjan M, Habibi M, Ghabussi A, Safarpour H, Safarpour M, Tounsi A (2020) Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory. Eng Struct 228:111496

    Article  Google Scholar 

  14. Al-Furjan MSH, Moghadam SA, Dehini R, Shan L, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: Semi-numerical and finite element modeling. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.107242

    Article  Google Scholar 

  15. Thai CH, Ferreira A, Tran T, Phung-Van P (2019) Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos Struct 220:749–759

    Article  Google Scholar 

  16. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW, Tounsi A (2020) On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel. Compos Struct 255:112947

    Article  Google Scholar 

  17. Al-Furjan M, Habibi M, won Jung D, Chen G, Safarpour M, Safarpour H (2020) Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doubly-curved panel. Eur J Mech-A/Solids 85:104091

    Article  MathSciNet  MATH  Google Scholar 

  18. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW (2020) Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via two-dimensional analysis. Thin-Walled Struct 157:107111

    Article  Google Scholar 

  19. Ghazanfari A, Soleimani SS, Keshavarzzadeh M, Habibi M, Assempuor A, Hashemi R (2020) Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech Based Des Struct Mach 48(6):755–772

    Article  Google Scholar 

  20. Al-Furjan M, Habibi M, Ebrahimi F, Mohammadi K (2020) Safarpour H (2020) Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories. Waves Random Complex Media. https://doi.org/10.1080/17455030.2020.1831099

    Article  MATH  Google Scholar 

  21. Al-Furjan M, Oyarhossein MA, Habibi M, Safarpour H, Jung DW (2020) Wave propagation simulation in an electrically open shell reinforced with multi-phase nanocomposites. Eng Comput. https://doi.org/10.1007/s00366-020-01167-9

    Article  Google Scholar 

  22. Al-Furjan M, Mohammadgholiha M, Alarifi IM, Habibi M, Safarpour H (2020) On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Eng Comput. https://doi.org/10.1007/s00366-020-01152-2

    Article  Google Scholar 

  23. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, Safa M (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct 154:106840

    Article  Google Scholar 

  24. Al-Furjan M, Habibi M, von Jung D, Sadeghi S, Safarpour H, Tounsi A, Chen G (2020) A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput. https://doi.org/10.1007/s00366-020-01130-8

    Article  Google Scholar 

  25. Al-Furjan M, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech 12(06):2050066

    Article  Google Scholar 

  26. Ghasemi AR, Mohandes M (2019) Free vibration analysis of rotating fiber–metal laminate circular cylindrical shells. J Sandwich Struct Mater 21(3):1009–1031

    Article  Google Scholar 

  27. Gholami R, Ansari R (2019) On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: a unified higher-order shear deformable model. Iran J Sci Technol Trans Mech Eng 43(1):603–620. https://doi.org/10.1007/s40997-018-0182-9

    Article  Google Scholar 

  28. Liu L, Liu S (2020) Integrated production and distribution problem of perishable products with a minimum total order weighted delivery time. Mathematics 8(2):146

    Article  Google Scholar 

  29. Ran W, Liu S, Zhang Z (2020) A polling-based dynamic order-picking system considering priority orders. Complexity 2020(1):15

    MATH  Google Scholar 

  30. Zuo C, Chen Q, Tian L, Waller L, Asundi A (2015) Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt Lasers Eng 71:20–32

    Article  Google Scholar 

  31. Zuo C, Sun J, Li J, Zhang J, Asundi A, Chen Q (2017) High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep 7(1):1–22

    Article  Google Scholar 

  32. Xu S, Wang J, Shou W, Ngo T, Sadick A-M, Wang X (2020) Computer vision techniques in construction: a critical review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09504-3

    Article  Google Scholar 

  33. Fu Y-M, Tao C (2016) Nonlinear dynamic responses of viscoelastic fiber–metal-laminated beams under the thermal shock. J Eng Math 98(1):113–128

    Article  MathSciNet  MATH  Google Scholar 

  34. Ghasemi AR, Mohandes M (2020) Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory. Mech Adv Mater Struct 27(1):43–54

    Article  Google Scholar 

  35. Shao X, Fu Y, Chen Y (2015) Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field. Smart Mater Struct 24(5):055023

    Article  Google Scholar 

  36. Merzuki M, Rejab M, Sani M, Zhang B, Quanjin M, Rafizi W (2019) Investigation of modal analysis on glass fiber laminate aluminium reinforced polymer: an experimental study. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing, p 012065. https://doi.org/10.1088/1757-899X/469/1/012065/meta

  37. Fu Y, Zhong J, Chen Y (2014) Thermal postbuckling analysis of fiber–metal laminated plates including interfacial damage. Compos B Eng 56:358–364

    Article  Google Scholar 

  38. Mohandes M, Ghasemi AR, Irani-Rahagi M, Torabi K, Taheri-Behrooz F (2018) Development of beam modal function for free vibration analysis of FML circular cylindrical shells. J Vib Control 24(14):3026–3035

    Article  MathSciNet  Google Scholar 

  39. Khare S, Mittal ND (2019) Axisymmetric bending and free vibration of symmetrically laminated circular and annular plates having elastic edge constraints. Ain Shams Eng J 10(2):343–352. https://doi.org/10.1016/j.asej.2018.10.006

    Article  Google Scholar 

  40. Khan AH, Patel BP (2019) Nonlinear periodic response of bimodular laminated composite annular sector plates. Compos B Eng 169:96–108. https://doi.org/10.1016/j.compositesb.2019.03.061

    Article  Google Scholar 

  41. Zhang H, Zhu R, Shi D, Wang Q (2019) A simplified plate theory for vibration analysis of composite laminated sector, annular and circular plate. Thin-Walled Struct 143:106252. https://doi.org/10.1016/j.tws.2019.106252

    Article  Google Scholar 

  42. Civalek Ö, Baltacıoglu AK (2019) Free vibration analysis of laminated and FGM composite annular sector plates. Compos B Eng 157:182–194

    Article  Google Scholar 

  43. Liu Y, Zhang B, Feng Y, Lv X, Ji D, Niu Z, Yang Y, Zhao X, Fan Y (2020) Development of 340-GHz transceiver front end based on GaAs Monolithic integration technology for THz active imaging array. Appl Sci 10(21):7924

    Article  Google Scholar 

  44. Niu Z, Zhang B, Wang J, Liu K, Chen Z, Yang K, Zhou Z, Fan Y, Zhang Y, Ji D (2020) The research on 220 GHz multicarrier high-speed communication system. China Commun 17(3):131–139

    Article  Google Scholar 

  45. Zhang B, Niu Z, Wang J, Ji D, Zhou T, Liu Y, Feng Y, Hu Y, Zhang J, Fan Y (2020) Four-hundred gigahertz broadband multi-branch waveguide coupler. IET Microwaves Antennas Propag 14(11):1175–1179

    Article  Google Scholar 

  46. Zhang B, Ji D, Fang D, Liang S, Fan Y, Chen X (2019) A novel 220-GHz GaN diode on-chip tripler with high driven power. IEEE Electron Device Lett 40(5):780–783

    Article  Google Scholar 

  47. Zhao J, Liu J, Jiang J, Gao F (2020) Efficient deployment with geometric analysis for mmWave UAV communications. IEEE Wirel Commun Lett 9(7):1115–1119

    Google Scholar 

  48. Hu J-w, Zheng B-y, Wang C, Zhao C-h, Hou X-l, Pan Q, Xu Z (2020) A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments. Front Inf Technol Electro Eng 21:675–692

    Article  Google Scholar 

  49. Bai B, Guo Z, Zhou C, Zhang W, Zhang J (2021) Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Inf Sci 546:42–59

    Article  MathSciNet  MATH  Google Scholar 

  50. Ma H-J, Yang G-H (2015) Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections. IEEE Trans Autom Control 61(11):3240–3255

    Article  MathSciNet  MATH  Google Scholar 

  51. Ma H-J, Xu L-x (2020) Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory. IEEE Trans Autom Control. https://doi.org/10.1109/TAC.2020.3014292

    Article  Google Scholar 

  52. Ding L, Huang L, Li S, Gao H, Deng H, Li Y, Liu G (2020) Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain. IEEE Trans Rob 36(3):894–909

    Article  Google Scholar 

  53. Zhang X, Jing R, Li Z, Li Z, Chen X, Su C-Y (2020) Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems. IEEE/CAA J Autom Sinica 8(4):916–928

    Article  MathSciNet  Google Scholar 

  54. Li A, Spano D, Krivochiza J, Domouchtsidis S, Tsinos CG, Masouros C, Chatzinotas S, Li Y, Vucetic B, Ottersten B (2020) A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions. IEEE Commun Surv Tut 22(2):796–839

    Article  Google Scholar 

  55. Hu Y, Wu S, Withers PJ, Cao H, Chen P, Zhang Y, Shen Z, Vojtek T, Hutař P (2021) Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Eng Fract Mech 245:107588

    Article  Google Scholar 

  56. Ma H-J, Xu L-X, Yang G-H (2019) Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems. IEEE Trans Cybernet. https://doi.org/10.1109/TCYB.2018.2889679

    Article  Google Scholar 

  57. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588. https://doi.org/10.1016/j.compstruct.2016.09.070

    Article  Google Scholar 

  58. Liu H, Wu H, Lyu Z (2020) Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerospace Sci Technol 98:105702

    Article  Google Scholar 

  59. Ma L, Liu X, Moradi Z (2021) On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation. Eng Comput. https://doi.org/10.1007/s00366-020-01210-9

    Article  Google Scholar 

  60. Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A (2019) Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1666723

    Article  Google Scholar 

  61. De Villoria RG, Miravete A (2007) Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater 55(9):3025–3031. https://doi.org/10.1016/j.actamat.2007.01.007

    Article  Google Scholar 

  62. Li J, Tang F, Habibi M (2020) Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Eng Comput. https://doi.org/10.1007/s00366-020-01110-y

    Article  Google Scholar 

  63. Habibi M, Safarpour M, Safarpour H (2020) Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1779086

    Article  Google Scholar 

  64. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

    Article  Google Scholar 

  65. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin-Walled Struct 150:106683

    Article  Google Scholar 

  66. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669

    Article  Google Scholar 

  67. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press

    Book  Google Scholar 

  68. Oyarhossein MA, Aa A, Habibi M, Makkiabadi M, Daman M, Safarpour H, Jung DW (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10(1):1–19

    Google Scholar 

  69. Lori ES, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. https://doi.org/10.1007/s00366-020-01004-z

    Article  Google Scholar 

  70. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  71. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1719509

    Article  Google Scholar 

  72. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2020) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 26(2):461–473

    Article  Google Scholar 

  73. Zhao Y, Moradi Z, Davoudi M, Zhuang J (2021) Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory. Eng Comput. https://doi.org/10.1007/s00366-020-01242-1

    Article  Google Scholar 

  74. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135(2):144

    Article  Google Scholar 

  75. Zare R, Najaafi N, Habibi M, Ebrahimi F, Safarpour H (2020) Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller. Smart Struct Syst 26(4):469–480

    Google Scholar 

  76. Shokrgozar A, Safarpour H, Habibi M (2020) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng C J Mech Eng Sci 234(2):512–529

    Article  Google Scholar 

  77. Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H, Babaei B, Safarpour H (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1705166

    Article  Google Scholar 

  78. Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1701490

    Article  Google Scholar 

  79. Huang X, Zhu Y, Vafaei P, Moradi Z, Davoudi M (2021) An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate. Eng Comput. https://doi.org/10.1007/s00366-021-01320-y

    Article  Google Scholar 

  80. Hosseini-Hashemi S, Es’haghi M, Taher HRD (2010) An exact analytical solution for freely vibrating piezoelectric coupled circular/annular thick plates using Reddy plate theory. Compos Struct 92(6):1333–1351. https://doi.org/10.1016/j.compstruct.2009.11.006

    Article  Google Scholar 

  81. Ghiasian S, Kiani Y, Sadighi M, Eslami M (2014) Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int J Mech Sci 81:137–148. https://doi.org/10.1016/j.ijmecsci.2014.02.007

    Article  Google Scholar 

  82. Moradi Z, Davoudi M, Ebrahimi F, Ehyaei AF (2021) Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller. Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.1926572

    Article  Google Scholar 

  83. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35(4):1375–1389. https://doi.org/10.1007/s00366-018-0669-4

    Article  Google Scholar 

  84. Gholipour A, Ghayesh MH, Hussain S (2020) A continuum viscoelastic model of Timoshenko NSGT nanobeams. Eng Comput. https://doi.org/10.1007/s00366-020-01017-8

    Article  Google Scholar 

  85. Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1697932

    Article  Google Scholar 

  86. Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos Part B 175:107125

    Article  Google Scholar 

  87. Mohammadgholiha M, Shokrgozar A, Habibi M, Safarpour H (2019) Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. J Vib Control 25(19–20):2627–2640

    Article  MathSciNet  Google Scholar 

  88. Safarpour H, Hajilak ZE, Habibi M (2019) A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15(3):569–583

    Article  Google Scholar 

  89. Ebrahimi F, Hajilak ZE, Habibi M, Safarpour H (2019) Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc Inst Mech Eng C J Mech Eng Sci 233(13):4590–4605

    Article  Google Scholar 

  90. Mohammadi A, Lashini H, Habibi M, Safarpour H (2019) Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. J Solid Mech 11(2):440–453

    Google Scholar 

  91. Habibi M, Hashemabadi D, Safarpour H (2019) Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur Phys J Plus 134(6):307

    Article  Google Scholar 

  92. Dai Z, Zhang L, Bolandi SY, Habibi M (2021) On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses. Compos Struct. https://doi.org/10.1016/j.compstruct.2021.113599

    Article  Google Scholar 

  93. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A (2020) Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Compos Struct 252:112737

    Article  Google Scholar 

  94. Barooti MM, Safarpour H, Ghadiri M (2017) Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur Phys J Plus 132(1):6. https://doi.org/10.1140/epjp/i2017-11275-5

    Article  Google Scholar 

  95. Zenggang X, Zhiwen T, Xiaowen C, Xue-min Z, Kaibin Z, Conghuan Y (2019) Research on image retrieval algorithm based on combination of color and shape features. J Signal Process Syst. https://doi.org/10.1007/s11265-019-01508-y

    Article  Google Scholar 

  96. Shi K, Tang Y, Liu X, Zhong S (2017) Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA Trans 66:185–199

    Article  Google Scholar 

  97. Shi K, Tang Y, Liu X, Zhong S (2017) Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system. Optim Control Appl Methods 38(6):1208–1226

    Article  MathSciNet  MATH  Google Scholar 

  98. Wu C, Wang X, Chen M, Kim MJ (2019) Differential received signal strength based RFID positioning for construction equipment tracking. Adv Eng Inf 42:100960

    Article  Google Scholar 

  99. Lv X, Li N, Xu X, Yang Y (2020) Understanding the emergence and development of online travel agencies: a dynamic evaluation and simulation approach. https://doi.org/10.1007/s00542-016-2822-6

  100. Jiang Q, Shao F, Gao W, Chen Z, Jiang G, Ho Y-S (2018) Unified no-reference quality assessment of singly and multiply distorted stereoscopic images. IEEE Trans Image Process 28(4):1866–1881

    Article  MathSciNet  Google Scholar 

  101. He S, Guo F, Zou Q (2020) MRMD2.0: a python tool for machine learning with feature ranking and reduction. Curr Bioinf 15(10):1213–1221

    Article  Google Scholar 

  102. Zhang J, Chen Q, Sun J, Tian L, Zuo C (2020) On a universal solution to the transport-of-intensity equation. Opt Lett 45(13):3649–3652

    Article  Google Scholar 

  103. Yang M, Sowmya A (2015) An underwater color image quality evaluation metric. IEEE Trans Image Process 24(12):6062–6071

    Article  MathSciNet  MATH  Google Scholar 

  104. Hu J, Zhang H, Liu L, Zhu X, Zhao C, Pan Q (2020) Convergent multiagent formation control with collision avoidance. IEEE Trans Rob 36(6):1805–1818

    Article  Google Scholar 

  105. Hu J, Zhang H, Li Z, Zhao C, Xu Z, Pan Q (2020) Object traversing by monocular UAV in outdoor environment. Asian J Control. https://doi.org/10.1002/asjc.2415

    Article  Google Scholar 

  106. Chen Y, Zheng W, Li W, Huang Y (2021) Large group activity security risk assessment and risk early warning based on random forest algorithm. Pattern Recogn Lett 144:1–5

    Article  Google Scholar 

  107. Sun G, Li C, Deng L (2021) An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Comput Appl. https://doi.org/10.1007/s00521-021-05708-1

    Article  Google Scholar 

  108. Ma X, Zhang K, Zhang L, Yao C, Yao J, Wang H, Jian W, Yan Y (2021) Data-driven niching differential evolution with adaptive parameters control for history matching and uncertainty quantification. SPE J. https://doi.org/10.2118/205014-PA

    Article  Google Scholar 

  109. Cao L (2020) Changing port governance model: port spatial structure and trade efficiency. J Coastal Res 95(sp1):963–968

    Article  Google Scholar 

  110. Yin F, Xue X, Zhang C, Zhang K, Han J, Liu B, Wang J, Yao J (2021) Multifidelity genetic transfer: an efficient framework for production optimization. SPE J. https://doi.org/10.2118/205013-PA

    Article  Google Scholar 

  111. Xue X, Zhang K, Tan KC, Feng L, Wang J, Chen G, Zhao X, Zhang L, Yao J (2020) Affine transformation-enhanced multifactorial optimization for heterogeneous problems. IEEE Trans Cybernet. https://doi.org/10.1109/TCYB.2020.3036393

    Article  Google Scholar 

  112. Jiang Q, Shao F, Lin W, Gu K, Jiang G, Sun H (2017) Optimizing multistage discriminative dictionaries for blind image quality assessment. IEEE Trans Multimedia 20(8):2035–2048

    Article  Google Scholar 

  113. Shu C (2012) Differential quadrature and its application in engineering. Springer Science & Business Media

    Google Scholar 

  114. Zhang L, Chen Z, Habibi M, Ghabussi A, Alyousef R (2021) Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel. Compos Struct 269:11400. https://doi.org/10.1016/j.compstruct.2021.114000

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Doctoral foundation of Mudanjiang Normal University (MNUB201608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zirui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, Z., Liang, Z. et al. A comprehensive computer simulation of the size-dependent sector or complete microsystem via two-dimensional generalized differential quadrature method. Engineering with Computers 38 (Suppl 5), 4239–4255 (2022). https://doi.org/10.1007/s00366-021-01440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01440-5

Keywords