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Abstract
Bearing is one of the most fundamental components of rotary machinery, and its fatigue life is a crucial factor in designing. 
The design optimization of tapered roller bearing (TRB) is a complex design problem because various arrays of designing 
parameters and functional requirements should be fulfilled. Since there are many design variables and nonlinear constraints, 
presenting an optimal design of TRBs poses some challenges for metaheuristic algorithms. The Harris hawks optimization 
(HHO) algorithm is a robust nature-inspired method with unique exploitation and exploration phases due to its time-varying 
structure. However, this metaheuristic algorithm may still converge to local optima for more challenging problems such as the 
design of TRBs. Therefore, this study aims to improve the accuracy and efficiency of the shortcomings of this algorithm. The 
performance of the proposed algorithm is first evaluated for the TRB optimization problem. The TRB optimization design 
has nine design variables and 26 constraints because of geometrical dimensions and strength conditions. The productivity of 
the proposed method is compared with diverse metaheuristic algorithms in the literature. The results demonstrate the signifi-
cant development of dynamic load capacity in comparison to the standard value. Furthermore, the enhanced version of the 
HHO algorithm presented in this study is benchmarked with various well-known engineering problems. For supplementary 
materials regarding algorithms in this research, readers can refer to https:// alias gharh eidari. com.

Keywords Optimization · Swarm-intelligence algorithms · Harris hawks optimization · Constrained optimization · Tapered 
roller bearing · Fatigue life

1 Introduction

The tapered roller bearing (TRB) has been utilized for vari-
ous applications since it can be employed to convey motions, 
such as rotation, oscillation, and linear motion of systems 
[1]. Since the tapered roller bearing has conical rollers 

capable of running on conical races, it can resist a huge 
amount of radial and thrust loads [2].

To evaluate the life of roller bearing, several factors 
should be taken into consideration, the most dominant 
factors of which are the heat treatment of the bearing, sur-
face coating, and lubrication system [3, 4]. Consequently, 
to boost the performance of TRB, enhance the fatigue life 
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[5], and decrease the amount of maintenance/replacement 
costs, it is significant to present the optimal design of TRB. 
Therefore, the optimal design of TRB has been studied in 
a vast body of literature (Table 1 shows some of the previ-
ous works related to the roller bearing design). In the opti-
mal design of TRBs proposed by Tiwari et al. [2] using a 
genetic algorithm, the objective function was fatigue life 
which must be maximized, and the constraints contained the 
geometrical parameters and strength. Furthermore, sensitiv-
ity analysis was conducted by the authors to investigate the 
influence of various parameters on the design parameters. 
Tiwari et al. [6] analyzed the thermal behaviour of TRBs. 
In another study, design optimization was presented for the 
cylindrical roller bearing with the logarithmic profile by 
Kumar et al. [7]. A robust optimization study was presented 
by Verma and Tiwari [8] for minimizing the variation and 
maximizing the performance of tapered roller bearing. Simi-
larly, Kaylan et al. [9] used a multi-objective optimization 
methodology to maximize the dynamic capacity, minimize 
the film thickness, and maximize the bearing temperature. 
In this regard, an NSGA-II was used, and sensitivity analysis 
was performed to evaluate the sensitivity of objectives with 
the design variables. Genetic algorithm (GA) was used by 
Choi and Yoon [10] to present and optimize a design that 
enhanced the system life of a double row angular contact ball 
bearings used in an automobile wheel. Chakraborty et al. 
[11] proposed the optimal design of a deep groove ball bear-
ing using GA and showed that the optimized design varia-
bles led to superior performance to the parameters presented 
in the standard catalog. Dandagwhal et al. [12] optimized 
the design of cylindrical roller bearings and deep groove 
ball bearings. In this study, the modified version of the opti-
mization algorithm based on teaching–learning was used to 

achieve the best design for bearings. Related to the design 
on deep groove ball bearings, the performance of particle 
swarm optimization (PSO) and GA was evaluated by Panda 
et al. [13] to find the best design. Kang et al. [14] optimized 
the geometric parameters of an angular contact ball bear-
ing to enhance its performance using a robust optimization 
analysis. Tiwari and Vaghole [15] hybridized the artificial 
bee colony and the grid search method to improve the per-
formance of spherical roller bearing. Moreover, a sensitivity 
analysis was performed to evaluate the influence of design 
parameters on the objective function.

The optimization process in engineering cases is obli-
gated to satisfy the decision-maker’s requests [16–19]. This 
target should be done within the decision-making proce-
dure reasonably and efficiently [20–24]. Such complex 
problems can be within any engineering domain [25–27]. 
Some examples are parameters identification, prediction 
scenarios, electro-mechanical systems [28, 29], expert sys-
tems [30–35], and clustering problems [36]. Nowadays, the 
use of optimization algorithms such as PSO [37] and vari-
ants of differential evolution (DE) [38, 39] and ant colony 
optimizer (ACO) [40] has an undeniable role in engineering 
problems to address the challenging requirements of engi-
neering systems [41, 42]. There are recently a good set of 
swarm-based optimizers, including slime mould algorithm 
(SMA)1 [43], hunger games search (HGS)2 [44], gradient-
based optimizer (GBO) [45], and Runge–Kutta optimizer 

Table 1  Previous work-related to optimum design of roller bearing

Type of bearing Description

Spherical roller [1] Multi-objective optimization related to maximization of dynamic capacity and wear life of bearing and 
minimization of the elasto-hydrodynamic film thickness using non-dominated sorting genetic algorithm 
(NSGA-II)

Tapered roller [2] The maximization of the fatigue life using a genetic algorithm (GA)
Tapered roller [4] Quasi-static analysis of tapered roller bearings for different roller surface profiles
Tapered roller [6] Optimum design based on the thermal behaviour of tapered roller bearing using an evolutionary algorithm
Crowned cylindrical roller [7] Obtained optimum design to increase the life of cylindrical roller bearings using genetic algorithm (GA)
Tapered roller [8] Robust optimum design of tapered roller bearings using evolutionary algorithm
Tapered roller [9] Multi-objective optimization of tapered roller bearing design based on fatigue, wear, and thermal considera-

tions through genetic algorithm (GA)
Contact ball bearing [10] Maximize system life though filling geometrical and operational restrictions devoid of expanding mounting 

space
Ball bearing [11] Maximization of fatigue life through genetic algorithm (GA)
Deep groove ball bearing [12] Optimization of fatigue life using teaching–learning-based algorithm
Angular contact ball bearing [14] Robust design optimization under manufacturing tolerance
Spherical roller [15] Optimum design using artificial bee colony algorithm and grid search method

1 https:// alias gharh eidari. com/ SMA. html.
2 https:// alias gharh eidari. com/ HGS. html.

https://aliasgharheidari.com/SMA.html
https://aliasgharheidari.com/HGS.html
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(RUN)3 [46]. The swarm-based approaches [47–49] can sort 
out exploration and exploitation segments using stochastic-
enabled processes.

Harris hawks optimization (HHO)4 is one of the most 
recent meta-heuristic algorithms showing superiority in 
many engineering problems [50, 51]. For instance, in one 
study, the HHO algorithm was used by Abbasi et al. [52] 
to minimize the entropy generation of microchannel heat 
sinks. In this work, the performance of the HHO algorithm 
was compared with various algorithms in the literature, and 
the results proved the superiority of the HHO algorithm. A 
hybrid version of the Harris hawk optimization algorithm 
(HHO) and grasshopper optimization algorithm (GOA) 
was presented [53] to investigate the optimal placement of 
multiple optical network units in fibre-wireless networks. 
Izci et al. [54] employed the HHO algorithm to adjust the 
parameters of the PID controller to control the aircraft pitch. 
The performance of the HHO algorithm was compared with 
that of the salp swarm algorithm (SSA) and atom search 
optimization (ASO). The results revealed the superiority of 
the HHO algorithm to other metaheuristic algorithms. In 
another study, the HHO algorithm was used to tune the PID 
controller parameters to control the speed of a DC motor 
[55].

Improving the optimization algorithms via hybridization 
with other algorithms is a common approach for improving 
their accuracy and efficiency [41, 42, 51, 56–58]. Song et al. 
[59] proposed an improved version of the HHO algorithm, 
in which by adding Gaussian mutation and dimension deci-
sion strategies, the exploitation and exploration phases of 
the HHO algorithm were improved. In another study, Ridha 
et al. [60] presented a boosted version of the HHO (BHHO) 
algorithm for parameter identification of photovoltaic mod-
ules. Comparing results with other metaheuristic algorithms 
available in the literature showed that BHHO outperformed 
other algorithms in identifying the parameters of single-
diode solar cell models. Barshendeh et al. [61] introduced a 
novel hybrid multi-population algorithm with artificial eco-
system-based optimization and Harris hawks optimization 
to achieve the best result related to engineering problems. 
A modified version of the HHO algorithm was proposed by 
Gupta et al. [62]. In this study, four strategies were combined 
with the main HHO algorithm to enhance the efficiency of 
the HHO algorithm. A hybridize version of the HHO algo-
rithm for SAR target recognition and stock market index pre-
diction was proposed by Hu et al. [63]. In this investigation, 
the velocity of the PSO algorithm and the crossover vector 
of the AT algorithm was combined with the HHO algorithm 

to improve its performance. Zhang et al. [25] applied adap-
tive cooperative and dispersed foraging strategies to improve 
the position update. These changes improved diversity and 
avoided local optima. Abdol-Basset et al. [64] hybridized the 
HHO algorithm with simulated annealing to improve HHO 
performance for the feature selection.

Survival exploration strategies applied successfully to 
the structure of the HHO, which resulted in efficient results 
compared to other competitors [65]. Authors developed a 
Gaussian bare bone HHO in [66] for predicting entrepre-
neurial intentions. A multi-population DE-based version 
was also proposed that can show excellent exploratory pat-
terns [67]. HHO and its progressive variants also applied 
to parameters identification of photovoltaic cells [60, 68], 
image segmentation [69, 70], web service composition [71], 
diagnosing coronavirus disease [72], predicting di-2-ethyl-
hexyl phthalate toxicity [65], parameter estimation of photo-
voltaic models [73, 74], real-world engineering optimization 
problem [75], and feature selection [76, 77]. For a review of 
recent works on HHO, please refer to work in [78].

According to the reviewed papers, the optimization-
based designs available in the literature are mainly based 
on classical algorithms like genetic algorithm (GA). While 
the classical algorithms can be efficient for some of the 
problems, there is still room for novel algorithms to present 
an optimal roller bearing design. This paper proposes an 
improved version of the HHO algorithm that shows supe-
riority in roller bearing design. A multi-strategy algorithm 
based on the Harris hawk optimization algorithm is designed 
with some advantages compared to the standard HHO. At 
the beginning of standard HHO, a chaotic technique is per-
formed to distribute agents equally in the search space. In 
the exploration phase, new strategies are added to increase 
the power of the exploration phase. Finally, a chaotic local 
search is added to avoid local optima. The optimization of 
TRBs demonstrates the efficiency of the proposed algorithm. 
Furthermore, to evaluate the accuracy and efficiency of the 
proposed algorithm, it is benchmarked on several famous 
engineering problems. The rest of this paper is organized as 
follows: In Sect. 2, the geometry of TRBs is given, and stress 
analysis is conducted on the roller bearing. An optimization 
methodology for TRB maximization, including the objective 
function, design variables, and the associated constraints, 
is elaborated on comprehensively in Sect. 3. An overview 
of the proposed EHHO algorithm is given in Sect. 4. The 
results are addressed in Sect. 5. Finally, Sect. 6 is reserved 
for conclusions.

3 https:// alias gharh eidari. com/ RUN. html.
4 https:// alias gharh eidari. com/ HHO. html.

https://aliasgharheidari.com/RUN.html
https://aliasgharheidari.com/HHO.html
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2  Tapered roller bearing

2.1  Geometrical structure of TRB

There are four critical elements in this type of bearing, 
which are shown in Fig. 1: (1) shortened cones with the 
number of rollers inside this, (2) a cage to carry rollers, (3) 
cone (internal ring), and (4) cap or external ring. The TRB 
has a larger lip at the cone’s back to reinforce the axial force 

from the set of rollers and a smaller lip near the cone, the 
function of which is to provide the consistency of the rollers.

The measurement parameters of TRB, based on standard 
catalog [79], consists of (d) as a bore diameter, (T) as the width 
of the bearing, (D) appears for outer diameter, (C) stands for the 
width of the cup, ( � ) and (B) represent the contact angle and the 
cone’s width, respectively, as demonstrated in Fig. 1.

The semi-taper angle ( � ) is formulated according to two 
other separate parameters, named pitch diameter ( Dm ) and 
mean diameter ( Dr ), as follows:

Fig. 1  Structure of TRB

Fig. 2  Internal dimensions of 
tapered roller bearing
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The constraints of the design optimization problem are 
related to the internal dimension of the TRB, which is 
explained below.

The minimum thickness of the front-face of the cup, 
shown in Fig. 2, is calculated using Eq. (2), and the one 
related to the cone is determined from Eq. (3):

The minimum width of the back-face and the front-face of 
the cup, C1min

 and C2min
 , respectively, can be expressed as [2]:

Moreover, the total width is calculated as follows:

Similar to the cup, there is a back-face related to the cone, 
the minimum of which can be derived from Fig. 2 as follows:

(1)� = tan−1
(

Dr sin �

Dm + Dr cos �

)
.

(2)
So
2min

=
1

2
D − HI =

1

2
D −

{
1

2
Dmcosec(� − �o) +

1

2
l
}
sec�osin�,

(3)Si
1min

= FJ −
1

2
d =

{
1

2
Dmcosec(� − �o) −

1

2
l
}
sec�osin(� − 2�o) −

1

2
d.

(4)C2min
= (C + AX) − AI =

[
C +

1

2
Doinner

cot(�)
]
−
[{

1

2
Dmcosec(� − �o) +

1

2
l
}
sec�ocos�

]
,

(5)C1min
= C − C2min

−
lcos�

cos�o
.

(6)C = C2min
+ C1min

+
lcos�

cos�o
.

(7)B2min
= (T + AX) − AY =

[
T +

1

2
Doinner

cot�
]
−
[{

1

2
Dmcosec(� − �o) +

1

2
l
}
sec�ocos(� − 2�o)

]
.

B1min
 is related to internal dimensions and is given as

Moreover, the thickness of the back-face of the cup is 
determined using Eq. (9):

One of the internal dimensions ( Si
2min

 ) relates to the sur-
face of the cone, which is shown in Fig. 2 can be calculated 
as

2.2  Stress analysis of TRB

Every equipment during its operation experiences loads and 
stresses in terms of normal and shear types. For TRB, these 
loads act on the bearing’s flange. To determine such forces, 
the free body diagram shown in Fig. 3 is taken into consid-
eration. The forces which act on the bearing components are 
obtained according to the static equilibrium formula of bear-
ing. ( Qo ) and ( Qf  ) are loads on the cup and spherical face 
of TRB roller, respectively, which are written in Eq. (11) 

as follows:

where force Qi is determined based on stribeck’s equation 
[80], � is roller contact angle,�i is named as cone contact 

(8)B1min
= B − B2min

−
l

cos�o
cos(� − 2�o).

(9)
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1
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=
1

2
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1

2
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2
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1

2
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}
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1

2
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1

2
lsin�o
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cos(� − �o)

})
.

(10)Si
2min

=

{
1

2
Dm −

Dr

2
cos(� − �o) +

l

2
sin�o

}
−

d

2
.

(11)

Qf = Qicos�i
(sin� − tan�icos�)

sin(� + �f )
,

Qo = Qicos�i
(sin�f + tan�icos�f )

sin(� + �f )
,

Fig. 3  Schematic view of roller’s force
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angle and calculated as � − 2� , and Flange angle ( �f  ) is 
given as Eq. (12)[8]:

where the value of R is 95% of the length AB and �=0.125.
Load ( Qf  ) causes bending stress ( �bf  ) and shear stress 

( �f  ). Also, tensile stress ( �tf  ) happens due to flange loads 
and is formulated in Eq. (13).

The maximum shear stress occurring in TRB’s flange 
shape is written by

Similarly, the other components of stresses which are cre-
ated by bending moment are given by

(12)
�f = sin−1

(
�Dr − (AB − R)sin�

R

)
+ � − 2�,

AB =
Dm

2sin(� − 2�)
−

Drcos(� − �)

2sin(� − 2�)
+

l

2cos�
,

(13)

�tf =
Qf sin�f

Af

,

Af =
�
(

1

2
d + Si

2min

)
B2min

Z
.

(14)�f = 1.5
Qf cos�f

Af

.

(15)

�bf =
Qf hf cos

2�f

EI
,

hf =

1

2
d1 −

(
1

2
d + Si

2min

)

2 cos�f
,

I =
1

12

�
(

1

2
d + Si

2min

)
B3
2min

Z
.

where Z,I , and E indicate the number of rollers, area 
moment of inertia, and Young’s modulus, respectively. As 
the result of determining all the components of stresses, the 
maximum principal stress is achieved in the flange shape 
part of the roller using Eq. (16):

The computation of the above parameters exploited as the 
constraints for the optimization process is explained below.

3  Formulation of the optimization problem

In this part of the paper, the formula to achieving the best 
performance of TRB is explained in detail. Design parame-
ters and structural constraints are set to maximize the objec-
tive function (fitness function) as shown below:

In Sects. 3.1 to 3.3, the method of obtaining three parts 
of an optimization problem, including variables, objective 
functions, constraints, is defined.

3.1  Fitness function

Fatigue, corrosion, and creep are among the main fac-
tors for fracture in roller bearings. These kinds of failures 
can be diminished or removed by a proper design [2, 80]. 
The fatigue life in the bearing is distinguished as one of 

(16)�fmax
=

�tf + �bf

2
+

√(
�tf + �bf

2

)2

+ �f
2.

(17)

Objectives ∶ Maximize f (x)

Variable bounds ∶ x
(L)

l
≤ xi ≤ x

(U)

l
, xl ∈ x, l = 1,2, 3,… , n

Constraints ∶ gi(x)onstrhi(x) = 0 j = 1,2, 3,… , k

Table 2  Input parameters for tapered roller bearings [79]

Bearing number Standard boundary dimensions Standard internal 
dimensions

Standard chamfering dimensions Dynamic 
load rating

D

mm
d

mm
C

mm
B

mm
T

mm
d
1

mm
Doinner
mm

�
degree

r
1min

mm
r
2min

mm
r
3min

mm
r
4min

mm
r
5min

mm
Cd

kN

30,204 47 20 12 14 15.25 33.20 37.304 12.9527 1.0 1.0 1.0 1.0 0.5 27.5
30,205 52 25 13 15 16.25 37.40 41.135 14.0361 1.0 1.0 1.0 1.0 0.5 30.80
32,205 52 25 15 18 19.25 40.20 37.555 21.2500 1.0 1.0 1.0 1.0 0.5 35.80
322/28 58 28 16 19 20.25 43.90 42.436 20.5666 1.0 1.0 1.0 1.0 0.5 41.80
32,206 62 30 17 20 21.25 45.20 48.982 14.0361 1.0 1.0 1.0 1.0 0.5 50.10
30,207 72 35 15 17 18.25 51.80 58.844 14.0361 1.5 1.5 1.5 1.5 0.5 51.20
30,306 72 30 16 19 20.75 48.40 58.287 11.8597 1.5 1.5 1.5 1.5 0.4 56.10
32,207 72 35 19 23 24.25 52.40 57.087 14.0361 1.5 1.5 1.5 1.5 0.5 66.00
30,307 80 35 18 21 22.75 54.50 65.769 11.8597 2.0 2.0 1.5 1.5 0.8 72.10
32,208 80 40 19 23 24.75 58.40 64.715 14.0361 1.5 1.5 1.5 1.5 0.5 74.80



S4393Engineering with Computers (2022) 38 (Suppl 5):S4387–S4413 

1 3

the crucial design considerations and can be calculated 
as follows:

where Cd is known as dynamic load,L10 is defined as the 
life of bearing with 90% reliability, n is defined as an expo-
nent of load life, and P is specified as radial load [80]. The 
fatigue life of bearing and dynamic load is related to each 
other. Thus, maximizing dynamic capability is formulated 
as a fitness function to improve the bearing’s performance. 
The fitness function is written as shown below:

The dynamic load capacity for roller bearing is formu-
lated as [14]:

where

(18)L10 =

(
Cd

P

)n

106,

(19)Maximize f (x) = Cd

Cd = bmfc
(
ilecos�

) 7

9 Z
3

4Dr

29

27 ,

(20)

fc = 207.9�v�
2

9
(1 − �)29∕27

(1 + �)1∕4
×

⎡⎢⎢⎣
1 +

�
1.04

�
1 − �

1 + �

� 143

108

�9∕2⎤⎥⎥⎦

−2∕9

,

� =
Drmean

Dm

andDrmean
=

1

2

�
DrL.L

+ DrU.L

�
,

where Z , le , Dr are the number of rollers, adequate length, 
and mean diameter of rollers, respectively. Also,� is equal 
to 0.65 and is taken as a reduction factor into account.v is 
related to edge loading, which is 1.2 for TRB [80]. Finally,bm 
is taken as 1.1 [81].

3.2  Optimization variables

Nine variables are used for optimizing the design of TRB. 
The internal geometry of bearing, including sufficient length 
( le ), mean and peach diameter ( Dr,Dm ), and the number of 
rollers ( Z ) influences the dynamic load of bearing. Also, 
there are other types of variables that are used as constraints. 
KDmin

 and KDmax
 are minimum and maximum roller diameter, 

respectively. The remaining three variables, i.e., e , �, and � , 
are described as mobility parameters, the outer ring strength, 
and semi-taper angle in the bearing, respectively. The nine 
design variables are defined as follows:

All the design variables are positive integers for this 
problem.

3.3  Constraints

In this subsection, design constraints of the optimization 
problem are present. To decrease the stress concentration 
of the cup and cone of rollers, the lower and upper limits of 
the pitch diameter should be set as the following equation, 
which is defined as Constraints 1 and 2:

Hence, these constraints are written in the following 
form:

For restricting the contact stress, the mean diameter 
should be arranged as follows:

where Qmax is the largest value of the contact load and DrL.L
 

and DrU.L
 are minimum and maximum ranges obtained for 

(21)X =
{
Dm,Dr, le, Z,KDmin

,KDmax
, �, e, �

}
.

(22)
(
d + 2r1min

)
≤ Dm ≤

(
D − 2r3min

)
.

(23)
G1(X) = Dm −

(
d + 2r1min

)
≥ 0,

G2(X) =
(
D − 2r3min

)
−Dm ≥ 0.

(24)

DrL.L
≤ Dr ≤ DrU.L

,

DrL.L
= 212.43

√
Qmax

�cmax

,

DrU.L
=

1

2

��
D − 2r3min

�
−
�
d + 2r1min

��
,

Qmax =
5P

Zcos�
,

Table 3  Material properties of 
the bearing (steel)

Description Value

Safe contact stress 4000 MPa
Young’s modulus 210 GPA
Yield strength 600 MPa
Poisson’s ratio 0.3

Table 4  The optimization parameters

Optimization method Parameters Value

EHHO and HHO Population 80
� 1.5
Number of iterations 10,000

WOA Population 80
b 1
Number of iterations 10,000

SCA Population 80
a 2
Number of iterations 10,000
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mean diameter. According to the above explanation, Con-
straints 3 and 4 are derived as shown below:

According to the internal geometry of TRB, the length 
of the roller ( le ) should have the range in Eq.(26) to project 
from both faces of the cup.

Therefore, Constraints 5 and 6 can be expressed as 
follows:

The limit area for the number of roller is specified accord-
ing to Eq. (28), which contains lower and upper limits of 
pitch diameter.

Thus, Constraints 7 and 8 take the following form:

(25)
G3(X) = Dr − 212.43

√
Qmax

�safe
≥ 0,

G4(X) =

�
D − 2r3min

�
−
�
d + 2r1min

�

2cos�
− Dr ≥ 0.

(26)DrL.L
≤ le ≤ leU.L

(27)

G5(X) = le − DrL.L
≥ 0,

G6(X) =

(
C − r5min

− r4min

)

cos�
−le ≥ 0.

(28)
�
(
d + 2r1min

)

DrU.L

≤ Z ≤

�
(
D − 2r3min

)

DrL.L

.

(29)

G7(X) = Z −
�
(
d + 2r1min

)

DrU.L

≥ 0,

G8(X) =
�
(
D − 2r3i

)

DrL.L

− Z ≥ 0.

The following design criteria are chosen for the roller 
diameter:

The ranges for KDmin
 and KDmax

 are selected from a survey 
on TRBs [82]. d and D taken as bore and outsider diameter, 
respectively. As a result, Constraints 9 and 10 are expressed 
as follows:

Constraints 11 and 12 related to mobility factor are rep-
resented in the following form:

The criteria for value e are obtained from the study on 
TRBs [82].

Constraint 13 is associated with the width of the bearing 
cup, which is expressed as

Constraint 14 comes from the periphery of bearing. 
Width of the cup,So

2min
 , should have the following condition 

in the internal geometry of the bearing:

The higher stress level should be avoided in the cone of 
TRB. Thus, Constraint 15 is designed according to the cone 
of TRB, which is represented as

 where So
2min

 and Si
1min

 are minimum thickness of cup and cone 
of TRB, respectively.

The difference between C2min
 , as the lowest thickness of 

the front-face of the cup, and value r5min
 should be positive. 

Therefore, Constraint 16 can be formulated as Eq. (36):

For secure operation of the bearing, there should be a 
clearance between back-face of the cup and angle of the 
roller’s short end. Constraint 17 is given as

(30)
KDmin

(D − d)

2cos�
≤ Dr ≤ KDmax

(D − d)

2cos�
,

0.3 ≤ KDmin
≤ 0.4 and 0.5 ≤ KDmax

≤ 0.6.

(31)
G9(X) = Dr − KDmin

(D − d)

2cos�
≥ 0,

G10(X) = KDmax

(D − d)

2cos�
− Dr ≥ 0.

(32)
G12(X) = (0.5 + e)(D + d) − Dm ≥ 0,

G11(X) = Dm − (0.5 − e)(D + d) ≥ 0,

0.01 ≤ e ≤ 0.07.

(33)
G13(X) =

0.5(D − Dm − Dr)

cos�
− �Dr ≥ 0,

0.4 ≤ � ≤ 0.5.

(34)G14(X) = So
2min

−
{
1

2
D −

(
1

2
Doinner

+ Ctan�
)}

≥ 0.

(35)G15(X) = Si
1min

− So
2min

≥ 0,

(36)G16(X) = C2min
− r5min

≥ 0.
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The contact between the chamfer of the back-face of the 
cone and the roller’s corner of the big end should be avoided. 
Hence, adequate space between them is considered. There-
fore, Constraint 18 is given as

An appropriate distance must be considered among the 
chamfer of the front-face of the cone’s and edge of the tiny 
end of the roller. This gap can be reflected as Constraint 19, 
which is written as:

Constraints 20 and 21 are associated with resistance of 
the cone’s lips and thickness of the cup’s front-face. For 
Constraint 20, because the larger lip in comparison to the 
smaller one is subjected to superior load, Eq. (40) is pro-
posed as the constraint; for Constraint 21, the thickness of 
the front-face of the cup should have conditions based on 
Eq. (41).

Constraint 22 related to the sufficient length, le , is 
expressed as Eq. (42):

(37)G17(X) = C1min
− r4min

≥ 0.

(38)G18(X) = B2min
− r2min

≥ 0.

(39)G19(X) = B1min
− r5min

≥ 0.

(40)G20(X) = B2min
− B1min

≥ 0,

(41)G21(X) = C1min
− C2min

≥ 0.

Constraint 24 is in corelation with stress at the flange of 
the cone, which is given by Eq. (44):

where �fmax
 is the largest stress at the flange and �y is yield 

stress.
A restriction for contact stress is taken into account 

because the stress should not exceed 4000 MPa. Therefore, 
Constraint 25 is given as follows:

where �safe is the allowable contact stress and �l
max

 is the 
actual contact stress between the cone and the roller when 
the roller is loaded with Qmax over the cone.

There should be sufficient spacing between the rollers 
to have the secure operation of the bearing. The relevant 
Constraint (26) is written as follows:

(42)
G22(X) =

�C

cos�
− le ≥ 0,

0.8 ≤ � ≤ 0.95.

(43)G23(X) =
(
1

2
D − So

1min

)
−

1

2
Doinner

≥ 0.

(44)G24(X) = �y − �fmax
≥ 0,

(45)G25(X) = �safe − �l
max

≥ 0,

(46)G26(X) = 2� − 2Zsin−1
(
Drcos�

Dm

)
≥ Z

�

180
.

Fig. 5  The flowchart of the HHO algorithm
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4  Optimization methodologies

In this section, the optimization process of TRB’s design 
is described in great detail. From bearing catalog [83] and 
bearing standard [79], different TRB cases are introduced, 
the fatigue life of which is improved by the proposed meth-
ods. To perform the optimization process, some constant 
inputs reported in Table 2 are needed. These inputs show 
some characteristics related to different case bearings. 
Dynamic capacity ( Cd ) of every bearing is mentioned in 
Table 2, and radial force used in the calculation is based 
on 60% of dynamic capacity. Also, some material proper-
ties of bearings are reported in Table 3. The experiment 
tests for optimizing the fatigue life of TRBs are performed 
by boosted Harris hawk optimization algorithm. The Har-
ris Hawk optimization algorithm is explained briefly in 
Sect. 4.1 as it forms the basis for the proposed algorithm; 
the proposed algorithm is presented in detail in Sect. 4.2.

The optimization algorithms are so sensitive to their 
parameters, and choosing proper parameters can guarantee 
good convergence toward the optimal solution. Thus, to cali-
brate the parameters of the optimization algorithm, several 
different cases are considered and performed on bearing 
number 30204. The best performance of the parameters is 
reported in Table 4. Also, 10,000 iterations are chosen for 
executing the optimization process.

For having the fair comparison of results [84–87], two 
other effective algorithms (whale optimization algorithm 
[88, 89], and sine cosine algorithm (SCA) [90–93] are 
added to execute the simulated experiments. The coding of 
each algorithm is written in Matlab software, and the final 
results are based on ten separate runs. The best result of 
dynamic capacity for each algorithm is reported for the final 
comparison.

4.1  Harris hawks optimization algorithm (HHO)

Heidari et al. [50] have recently developed a novel and 
robust optimization algorithm that mimics Harris hawks 
birds’ cooperative behavior. These birds can capture the prey 
using several strategies. These strategies can be simulated 
as the main structure of the Harris hawk optimization algo-
rithm (HHO). Like every other optimizer, the Harris hawk 
optimizer has exploration and exploitation phases to find the 
final optimum solution of the objective function. All details 
related to the mechanism of the Harris hawk optimizer are 
explained in the following subsections.

4.1.1  Exploration (observation) stage

In this stage, the birds search and track the variables’ space 
for detecting the prey’s position as the optimum solution. 
Two equations are represented in this stage based on the 
strike tactics of Harris hawks: perching strategy and crouch-
ing strategy. These two strategies are expressed in the fol-
lowing form:

where Xrabbit(t) is the position of the prey, X(t + 1) is the 
place of search agents for the next round of algorithm, X(t) 
is the position of the search agents in the current iteration, 
and Xrand(t) is selected arbitrarily based on the present search 
agents.r1 through r4 produce a random number in the interval 
of 0 and 1.Xm(t) is formulated as follows:

where Xi(t) is the location of each search agent, and N is the 
number of search agents.

4.1.2  Energy factor (transition factor)

The energy factor controls the changing phases between 
exploration and exploitation behaviours. The factor is 
described in Eq. (49). When the factor E is > 1, the explora-
tion stage is performed, and when is < 1, the exploitation 
phase is carried out.

where E0 is the initial energy which is randomly chosen 
between ( − 1,1), T  is the maximum iteration number, and t 
is the current iteration. The energy factor is plotted against 
the iteration number in Fig. 4.

(47)

X(t + 1) =

{
Xrand(t) − r1

||Xrand(t) − 2r2X(t)
|| q ≥ 0.5(

Xrabbit(t) − Xm(t)
)
− r3

(
LB + r4(UB − LB)

)
q < 0.5

,

(48)Xm(t) =
1

N

N∑
i=1

Xi(t),

(49)E = 2E0(1 − t∕T),
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4.1.3  Exploitation (intensification) stage

In this stage, the Harris hawks birds utilize diverse hunt-
ing strategies. These exploitation strategies contain 4 main 
attacking movements: soft besiege, hard besiege, soft 
besiege with progressive rapid dives, and hard besiege with 
progressive rapid dives. These four exploitation techniques 
are defined as follows:

4.1.3.1 Exploitation’s technique 1(Soft besiege) In this sit-
uation, the prey is confused and looks for a way to escape. 
This strategy is performed when r ≥ 0.5 , |E| ≥ 0.5 , which 

means that the prey is very exhausted. This tactic is mod-
elled as

where ΔX(t) denotes the location of the tired prey, J is a fac-
tor to show the prey’s behaviour, and r5 is randomly chosen 
from [0,1].

4.1.3.2 Exploitation’s technique 2 (hard besiege) This tac-
tic happens when r ≥ 0.5 , |E| ≥ 0.5 . A killer method as a 

(50)

X(t + 1) = ΔX(t) − E||JXrand(t) − X(t)||,
ΔX(t) = Xrand(t) − X(t),

J = 2
(
1 − r5

)
.

Fig. 7  The flowchart of the EHHO algorithm

Table 5  Lower and upper limits for optimization design variables

Bearing number Design variables

Dm(mm) Dr(mm) le Z KDmin
KDmax

� e �

L.L U.L L.L U.L L.L U.L L.L U.L L.L U.L L.L U.L L.L U.L L.L U.L L.L UL

30204 22 45 1.5452 11.8003 1.5452 10.7741 5 91 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
30205 27 50 1.6390 11.5 1.6390 11.8539 7 95 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
32205 27 50 1.8028 11.5 1.8028 14.4848 7 87 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
322/28 30 56 1.9435 13 1.9435 15.4870 7 90 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
32206 32 60 2.0903 14 2.0903 15.9770 7 90 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
30207 38 69 2.1132 15.5 2.1132 13.4001 7 102 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
30306 33 69 2.2023 18 2.2023 14.4075 5 98 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
32207 38 69 2.3992 15.5 2.3992 17.5231 7 90 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
30307 39 77 2.4967 19 2.4967 16.0424 6 96 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
32208 43 77 2.5541 17 2.5541 17.5231 7 94 0.3 0.4 0.5 0.6 0.4 0.5 0.01 0.07 0.80 0.95
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surprise pounce is executed in this part and can be math-
ematically presented as Eq. (51):

4.1.3.3 Exploitation’s technique 3 (Soft besiege with  pro‑
gressive rapid dives) When r < 0.5 , and |E| ≥ 0.5 , the Har-
ris hawk birds perform their next action based on the follow-
ing expression:

(51)X(t + 1) = Xrabbit(t) − E|ΔX(t)|.

(52)Y = Xrabbit(t) − E||JXrabbit(t) − X(t)||,

(53)

Z = Y + S × LF(D),

LF(x) =
u × �

�v� 1

�

, � =

⎛
⎜⎜⎜⎝

g × sin
�

��

2

�

g × � × 2

�
�−1

2

�

⎞
⎟⎟⎟⎠

1

�

,

where LF is known as the levy flight function,S is the ran-
dom vector,D is the number of search agents. u and v are 
chosen from [0,1] and � is equal to 1.5. To update the posi-
tions of search agents, the following expression proposed:

where Y  and Z are computed from Eq. (52) and Eq. (53).

4.1.3.4 Exploitation’s technique 4 (hard besiege with  pro‑
gressive rapid dives) In the last tactic of the exploitation 
phase, the Harris Hawks, as search agents for the opti-
mizer, are very close to the prey and kill it. This strategy is 
explained according to Eq. (55) and Eq. (56):

(54)X(t + 1) =

{
Y ifF(Y) < F(X(t))

Z if F(Z) < F(X(t))
,

(55)X(t + 1) =

{
Y if F(Y) < F(X(t))

Z if F(Z) < F(X(t))
,

Table 6  Optimization parameters for TRB design

Bold values indicate the best results

Bearing number Rank Optimiza-
tion method

Optimum parameters Cost

Dm

(mm)
Dr

(mm)
le Z KD

min
KDmax

� e � Cd

(N)

30204 1 EHHO 33.0749 7.2313 10.7305 14 0.3940 0.5933 0.4656 0.07 0.95 34,538.3
2 HHO 33.9860 6.3966 10.3566 16 0.4 0.6 0.5 0.07 0.9403 32,557.6
3 WOA 34.3789 5.9630 10.5196 17 0.4 0.6 0.5 0.0521 0.95 31,982.2
4 SCA 33.6178 6.6400 10.0329 15 0.4 0.5352 0.4814 0.07 0.95 31,500.8
5 GA [2] 34.999 5.29 10.0 20 0.3306 0.5847 0.4507 0.0623 0.9465 31,220

30205 1 EHHO 38.1566 6.4914 11.8460 18 0.4 0.5980 0.4507 0.0699 0.9440 39,864.3
4 HHO 39.4099 5.4227 11.0261 22 0.3126 0.5792 0.4827 0.0679 0.9059 36,069.5
2 WOA 38.3892 6.2773 11.7593 18 0.3649 0.5978 0.4982 0.07 0.9466 38,224.3
3 SCA 38.1955 6.6053 10.8431 17 0.3 0.6 0.4 0.0103 0.8549 36,322.9
5 GA [2] 39.366 5.38 11.0 21 0.3011 0.5479 0.4658 0.0575 0.9447 34,810

32205 1 EHHO 37.8752 6.0067 14.4667 20 0.4 0.6 0.5 0.0660 0.95 44,818.5
2 HHO 38.6718 5.2887 14.1878 23 0.3759 0.5602 0.4522 0.0103 0.8888 42,703.4
4 WOA 38.5210 5.7723 13.2257 22 0.3847 0.6 0.5 0.07 0.95 41,498.6
3 SCA 38.0050 5.8745 13.9157 20 0.3268 0.5129 0.4054 0.0104 0.95 42,449.7
5 GA [2] 38.646 5.38 13.0 22 0.3278 0.5978 0.4464 0.0517 0.9494 40,600

322/28 1 EHHO 42.2922 6.6763 15.3855 20 0.3999 0.5920 0.5 0.0106 0.9470 52,898.5
3 HHO 42.6596 6.3735 15.0591 22 0.3314 0.5824 0.4865 0.0679 0.9145 51,313.4
2 WOA 42.6949 6.3743 15.0751 21 0.3697 0.5724 0.4731 0.0697 0.9310 51,360.6
4 SCA 42.6438 6.5608 14.6048 20 0.3258 0.5 0.4 0.0604 0.95 49,833.0
5 GA [2] 42.839 6.14 14.0 21 0.3260 0.5987 0.4683 0.0699 0.9499 485,400

32206 1 EHHO 45.4239 8.1034 15.9621 17 0.3999 0.5998 0.4976 0.0699 0.9493 61,182.7
3 HHO 46.1074 7.8389 14.2253 18 0.4 0.6 0.4157 0.0245 0.95 56,315.1
4 WOA 45.9059 7.8566 14.9822 17 0.4 0.6 0.5 0.0390 0.95 56,317.9
2 SCA 46.0303 7.7433 14.8871 18 0.3946 0.6 0.4523 0.0109 0.95 57,582.7
5 GA [2] 47.329 6.37 15.0 21 0.3647 0.5993 0.4983 0.0666 0.9495 52,250
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The flowchart of the HHO process is given in Fig. 5.

4.2  Proposed enhanced Harris hawks (EHHO)

The mathematical formulation and procedure of the 
enhanced version of the Harris hawk optimization algo-
rithm are elaborated in this part. Based on the no free 
lunch (NFL) theory, not every algorithm applies to all 
problems. For instance, initialization in the HHO algo-
rithm is based on arbitrary numbers, generating a mature 
population. Furthermore, the proposed strategies used 
in HHO for updating the population are limited for sev-
eral applications. Plus, this algorithm is trapped in the 
local optimum. To enhance the performance of the HHO 
algorithm and improve the exploitation and exploration 
phases of the main algorithm, the following methods are 

(56)
Y = Xrabbit(t) − E||JXrabbit(t) − Xm(t)

||,
Z = Y + S × LF(D).

added to the HHO algorithm: (1) chaotic method, (2) 
update besiege strategy 3, (3) update besiege strategy 
4, (4) Gaussian mutation, and (5) CLS with a shrinking 
mode. The first two techniques are presented to assistant 
the HHO algorithm in generating a different mature popu-
lation; the third technique is added to the HHO algorithm 
to enhance its performance for updating the population, 
and the last two techniques are added to the main HHO 
algorithm to prevent it from being trapped in the local 
optimum.

4.2.1  Chaotic method

The initialization in the optimization algorithms is respon-
sible for spreading the design variables in the design space, 
which can lead to the convergence of the algorithm to the 
global optimum. The chaotic initialization approach is a 
powerful procedure that helps the algorithm to generate 
a more diverse population. The chaotic method has been 

Table 7  Optimization results for TRB design

Bold values indicate the best results

Bearing number Rank Optimiza-
tion method

Optimum parameters Cost

Dm

(mm)
Dr

(mm)
le Z KD

min
KDmax

� e � Cd

(N)

30207 1 EHHO 53.8069 9.1539 13.0691 18 0.356722 0.5213 0.4974 0.0514 0.9142 62,084.4
2 HHO 53.3063 9.6201 12.5616 17 0.361756 0.5476 0.4572 0.0101 0.8666 60,868.1
4 WOA 56.1596 6.9678 11.9946 24 0.300363 0.5006 0.4860 0.0339 0.8010 53,606.8
3 SCA 53.3906 9.5264 12.2235 17 0.36438 0.5359 0.4689 0.0188 0.8322 58,961.8
5 GA [2] 56.117 6.89 13.0 23 0.3305 0.5027 0.4666 0.0699 0.9417 54,510

30306 1 EHHO 51.5299 10.4971 14.3968 15 0.371458 0.5983 0.4822 0.0393 0.9432 68,439.6
2 HHO 52.2482 9.8508 14.0246 16 0.325396 0.6 0.5 0.0697 0.9076 65,748
4 WOA 52.1721 10.0208 13.2669 15 0.378517 0.6 0.5 0.0256 0.95 61,105.3
3 SCA 51.8496 10.3815 13.2908 15 0.330331 0.5463 0.4084 0.0605 0.9085 63,557.4
5 GA [2] 54.221 7.74 14.0 20 0.3451 0.5597 0.4999 0.0699 0.9498 59,350

32207 1 EHHO 53.2245 9.0549 17.5122 18 0.397334 0.5969 0.4998 0.0556 0.9463 77,162.2
4 HHO 55.4309 6.9632 16.9182 24 0.300001 0.5000 0.4630 0.0687 0.8663 70,135.9
2 WOA 53.0241 9.5731 16.2293 17 0.315465 0.5536 0.4555 0.0548 0.8974 73,982.6
3 SCA 53.2925 9.1628 16.7300 17 0.311826 0.5757 0.4844 0.0666 0.95 72,252
5 GA [2] 54.381 7.99 16.0 20 0.3516 0.5968 0.4678 0.678 0.9204 69,810

30307 1 EHHO 58.0431 11.8241 16.0144 15 0.309913 0.5864 0.4378 0.07 0.95 84,483.3
5 HHO 60.1575 10.1419 13.8516 18 0.367968 0.5022 0.4115 0.0574 0.9387 73,329.2
3 WOA 60.4662 9.6153 14.6739 20 0.371041 0.5549 0.4623 0.0438 0.8433 75,411.3
2 SCA 56.9436 12.8484 15.2605 13 0.3776 0.6 0.4 0.0688 0.95 79,927.4
4 GA [2] 60.875 8.77 15.0 20 0.3545 0.5823 0.4853 0.0643 0.9043 74,940

32208 1 EHHO 59.7637 10.1674 17.5122 18 0.399854 0.5965 0.4987 0.0303 0.95 87,259.1
4 HHO 60.2563 9.6762 15.6860 20 0.30076 0.5012 0.4891 0.0693 0.8020 79,052.7
2 WOA 60.4622 9.7165 16.4699 19 0.4 0.6 0.5 0.0607 0.9498 82,458.4
3 SCA 59.5876 10.4600 16.1836 17 0.308451 0.6 0.4 0.0479 0.9116 81,068.9
5 GA [2] 60.800 9.06 15.0 20 0.3847 0.5988 0.4517 0.0390 0.8626 75,420
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employed in a wide range of engineering problems, such as 
feature selection and chaos control [94, 95]. A large number 
of chaotic maps [96], such as the Chebyshev map, circle 
map, and intermittency map, are available in the literature. 
Herein, a prominent logistic map is used, which is described 
as follows:

where � = 4 is a controlling factor , �1 is an arbitrary num-
ber between 0 and 1, and S is the number of search agents. 
To achieve a population with better quality, after the first 
arbitrary initialization in the main HHO algorithm, chaotic 
mapping is performed. This modification improves the con-
vergence of the algorithm [97]. This disturbance can then be 
obtained using the following formulation:

where Xc
i
 is the position of the ith Harris hawk with chaotic 

disturbance, and �i is the ith value in the chaotic sequence.

(57)�i+1 = ��i ∗
(
1 − �i

)
, i = 1,2,… , S − 1,

(58)Xc
i
= �iXi,

4.2.2  Update besiege strategy 3

To effectively update the location in Strategy 3 of the stand-
ard HHO algorithm, instead of utilizing a soft besiege with 
rapid progressive dives, a formulation from the flower polli-
nation optimization algorithm is utilized [20]. This approach 
can be developed as follows [98]:

where � denotes an arbitrary number between 0 and 1, and 
Xj(t) and Xk(t) represent pollens from the jth and kth flowers 
of the identical population, respectively. This technique can 
enhance the performance of the HHO algorithm to present 
a more diverse solution in the next iteration.

(59)

Y = X(t) + LF
(
Xrabbit(t) − X(t)

)
,

Z = X(t) + 𝜀
(
Xj(t) − Xk(t)

)
,

X(t + 1) =

{
Y if F(Y) < F(X(t))

Z if F(Z) < F(X(t))
,

Table 8  Optimum internal 
geometry obtained by different 
optimization algorithms

Bearing number Optimi-
zation 
method

Optimum parameters of internal geometry

So
2
min(mm)

Si
1
min(mm)

B
1
min

(mm)
B
2
min

(mm)
C
1
min

(mm)
C
2
min

(mm)
�f
degree

�o

degree

30204 EHHO 2.2030 2.2030 1.0400 2.3337 1.0339 0.5 8.7777 2.3134
HHO 2.2030 3.0515 1.2920 2.4685 1.4004 0.5 9.2694 2.0416
WOA 2.2030 3.4253 1.0686 2.5396 1.2424 0.5 9.5160 1.9047
SCA 2.3026 2.7863 1.2104 2.8651 1.2823 0.9332 9.1177 2.1261
GA [2] 2.437 3.665 1.509 3.603 1.703 1.520 9.757 1.693

30205 EHHO 2.3075 2.3745 1.0144 2.3113 1.0004 0.5 10.3736 2.0283
HHO 2.3075 3.5346 1.6393 2.5202 1.7984 0.5 10.9930 1.6864
WOA 2.3075 2.5903 1.0648 2.3517 1.0850 0.5 10.4966 1.9603
SCA 2.3536 2.4301 1.8304 2.4816 1.7893 0.6843 10.3245 2.0569
GA [2] 2.352 3.534 1.475 2.710 1.642 0.681 10.79 1.676

32205 EHHO 1.5837 1.6465 1.4182 2.6248 1.0000 0.5 16.0377 2.8668
HHO 1.5837 2.3463 1.5138 2.8495 1.2640 0.5 16.6748 2.5172
WOA 1.6002 2.2189 2.5027 2.7563 2.1172 0.5423 16.2961 2.7283
SCA 1.6829 1.8344 1.6553 2.9283 1.2598 0.7550 16.1557 2.8034
GA [2] 1.766 2.463 2.192 3.307 1.901 0.969 16.71 2.558

322/28 EHHO 1.9662 1.9662 1.6443 2.4794 1.0782 0.5 15.5429 2.7660
HHO 1.9870 2.3064 1.8310 2.6277 1.3302 0.5554 15.7802 2.6362
WOA 1.9662 2.3211 1.8718 2.5717 1.3707 0.5 15.7831 2.6346
SCA 1.9841 2.2846 2.3161 2.5713 1.7631 0.5476 15.6578 2.7048
GA [2] 2.197 2.627 2.222 3.272 1.763 1.116 16.00 2.541

32206 EHHO 2.3840 2.3840 1.3077 2.952969 1.0039 0.5 10.2180 2.1123
HHO 2.3840 2.9840 2.9680 3.013218 2.6907 0.5 10.3759 2.0271
WOA 2.3840 2.8116 2.2291 3.004961 1.9558 0.5 10.3532 2.0387
SCA 2.3893 2.9304 2.2828 3.047944 2.0271 0.5212 10.4075 2.0088
GA [2] 2.401 4.154 1.897 3.358 1.873 0.568 10.80 1.654
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4.2.3  Update besiege strategy 4

In this section, to improve the performance of the HHO 
algorithm, a mutation vector extracted from the 2-Opt algo-
rithm and differential evolution algorithm (DE) [99, 100] 
is replaced by hard besiege with a rapid progressive diving 
technique. This approach can be expressed as follows:

where F is a parameter that strikes an equilibrium between 
the local and the global capacity of the enhanced version 
of the HHO algorithm. X�(t) , X�(t) , and X� (t) are selected 
from the population. � t is an arbitrary number between 0 and 
1. This method aims to restrict the rising exploitation and 
prevents being trapped in local optima [60].

(60)

X(t + 1) =

{
X𝛼(t) + F

(
X𝛽(t) − X𝛾 (t)

)
f
(
X𝛼(t)

)
< f

(
X𝛽(t)

)
X𝛽(t) + F

(
X𝛼(t) − X𝛾 (t)

)
otherwise

,

F = 1.2 × 𝛽 t − 1,

4.2.4  Gaussian mutation

Another approach employed in this study to enhance the 
diversity of the solution is the Gaussian mutation. This 
strategy has been adopted in a wide range of metaheuristic 
algorithms to create diversity in solutions [97, 101]. The 
main purpose of the Gaussian mutation is to boost the global 
search. Gaussian mutation makes a slight arbitrary change 
in the group of search agents to prevent trapping in the local 
optima, leading to more exploitation ability and better con-
vergence. Considering the average of 0 and the standard 
deviation of 1, a random variable is formed. The Gaussian 
density function can be formulated as follows [97]:

where �2 indicates the variance, and � represents an arbitrary 
Gaussian value between [0,1]. The standard deviation is con-
sidered to be equal to 1. The Gaussian function with various 
standard deviation rates is demonstrated in Fig. 6. In the pro-
posed algorithm, firstly, the population is updated according 

(61)fgaussian(0,�2)(�) =
1√
2��2

e
−

�2

2�2 ,

Table 9  Optimum internal 
geometry obtained by different 
optimization algorithms

Bearing number Optimi-
zation 
method

Optimum parameters of internal geometry

So
2
min(mm)

Si
1
min(mm)

B
1
min

(mm)
B
2
min

(mm)
C
1
min

(mm)
C
2
min

(mm)
�f
degree

�o

degree

30207 EHHO 3.0310 3.7907 2.0602 2.0602 1.5009 0.8121 10.3803 2.0283
HHO 3.1125 3.3767 2.3059 2.3059 1.6669 1.1380 10.1922 2.1331
WOA 3.0625 6.0366 2.6099 2.6099 2.4212 0.9380 11.2649 1.5385
SCA 3.1576 3.4895 2.4410 2.5059 1.8146 1.3186 10.2299 2.1126
GA [2] 3.000 5.955 1.863 2.370 1.695 0.688 10.90 1.524

30306 EHHO 3.5805 4.6056 1.4645 3.2652 1.5018 0.4 8.2577 1.9991
HHO 3.5805 5.2806 1.7469 3.3612 1.8673 0.4 8.4846 1.8735
WOA 3.6121 5.2185 2.3656 3.4910 2.4582 0.5508 8.4326 1.9031
SCA 3.5919 4.8920 2.4862 3.3418 2.5307 0.4543 8.3110 1.9706
GA [2] 3.643 7.219 1.175 3.988 1.595 0.698 8.797 1.474

32207 EHHO 2.8315 3.1627 2.0059 3.7359 1.5000 0.5 10.3718 2.0283
HHO 2.8315 5.2111 2.2368 4.1453 2.0808 0.5 11.2268 1.5556
WOA 2.8315 2.9474 3.3453 3.6495 2.7443 0.5 10.1836 2.1339
SCA 2.8392 3.2167 2.7584 3.7521 2.2280 0.5309 10.3400 2.0467
GA [2] 2.962 4.331 2.787 4.471 2.447 1.023 10.69 1.786

30307 EHHO 3.5035 4.5974 1.6982 3.4281 1.5178 0.8 8.2579 1.9992
HHO 3.5035 6.5665 3.6045 3.6882 3.6380 0.8 8.7935 1.7035
WOA 3.5254 6.9000 2.6154 3.8705 2.7292 0.9043 8.9430 1.6198
SCA 3.6216 3.6367 2.0072 3.8521 1.6918 1.3625 7.9418 2.1752
GA [2] 3.556 7.325 2.069 4.101 2.264 1.050 8.739 1.531

32208 EHHO 3.0175 3.3879 1.7375 4.0043 1.5 0.5 10.3753 2.0283
HHO 3.2353 4.0084 2.5722 4.9797 2.4025 1.3710 10.5557 1.9299
WOA 3.0175 4.0227 2.6850 4.0948 2.5127 0.5 10.5523 1.9312
SCA 3.1223 3.2859 2.6658 4.3794 2.3700 0.9190 10.2781 2.0834
GA [2] 3.348 4.611 2.685 5.554 2.615 1.825 10.70 1.809
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to the energy escaping factor and besiege methods; then, a 
new population of Harris hawks is created based on Eq. (62):

where X’(t) denotes the location of the new population in 
each iteration. G(�) represents the Gaussian step vector 
according to the Gaussian density presented in Eq. (61).

4.2.5  CLS with shrinking mode

Local search (LS) is one of the most efficient strategies for 
preventing algorithms from being trapped in local optima. It 
is essential to scour the final solution’s vicinity since, most 
of the time, the solution is in the neighbourhood of local 
optima, and the algorithm cannot detect it. Consequently, 
adding LS to the main HHO algorithm can significantly 
enhance the performance of the algorithm. Note that, some-
times, LS is not sufficient and would not lead to desirable 

(62)X’(t) = X(t) ∗ (1 + G(�)),

results. Thus, a chaotic local search (CLS) can be utilized. 
Since there is randomicity in chaos, CLS can lead to imma-
ture convergence [97]. The CLS strategy is added in the last 
step of the algorithm to detect the best solution. The CLS 
approach can be formulated as follows:

where X’(c)

k
 is the kth new location created by CLS, X∗ shows 

the best rabbit found so far, �k is the signal generated in the 
kth chaos, and LB and UB represent the lower and upper lim-
its of the search space, respectively. � denotes the shrinking 
scale factor, and t is the current iteration. m is used to handle 
the shrinking rate and is equal to 1500. Figure 7 depicts 

(63)
X
’(c)

k
= (1 − �)X∗ + �

(
LB + �k(UB − LB)

)
,

� = 1 −
||||
t − 1

t

||||
m

,
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Fig. 8  The convergence curve for different bearing numbers a 30204, b 30205, c 32205, and d 322/28
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the flowchart of the enhanced version of the Harris hawk 
algorithm (EHHO).

5  Results and discussions

In this section of the study, first, the simulated experiment’s 
outcome is presented, and the manner every element of the 
proposed algorithm can affect the promotion of the final 
result is examined in detail. Also, the results are compared 
with the value from the existing catalog. For checking the 
proposed algorithm’s capability, some of the famous engi-
neering problems are chosen to be examined under the pro-
posed algorithm.

5.1  Optimum design of TRB

For performing the optimization process, every variable’s 
limit should be identified in the first calculation stage not to 
exceed the reasonable number. Maximum and minimum val-
ues of each variable used in the design of TRB are computed 
based on Constraints 1–8 (Table 5). The reported limita-
tion of variables in Table 5 is used as the boundaries of the 
design variables in optimization algorithms, which include 
enhanced Harris hawk (EHHO), standard Harris hawk 
(HHO), whale algorithm (WOA, and sine cosine algorithm 
(SCA). Different algorithms, including the best solution with 
their optimum variables, are summarised in Tables 6, 7 for 
ten different tapered roller bearings. In Tables 6, 7, results 
are ranked based on the value of dynamic load capacity. It 
is seen from the results that the introduced enhanced Har-
ris hawk optimization algorithm has superior capability in 
finding the maximum dynamic load capacity as the optimum 
outcome and ranks first among the other algorithms. After 
the enhanced Harris hawk algorithm, the standard Harris 
hawk has better convergence toward the maximum solution 
among the rest of the algorithms. It is noteworthy that all 
values of dynamic load capacity are significantly improved, 
among which bearing number 30205 has higher improve-
ment (29.4%), and bearing number 32208 has the lowest 
improvement (16.6%).  

Moreover, in the results obtained by the enhanced Harris 
hawk optimization algorithm, it can be seen that although 
some bearing cases have lower roller numbers, they show 
better efficiency in terms of fatigue life. Therefore, having 
a higher number of rollers does not guarantee better fatigue 
life. Some parameters related to internal geometry which are 
obtained during the optimization process are summarized 
in Tables 8, 9.

The convergence curve of the optimization algorithms 
shows how to obtain the final result (Fig. 8). Better perfor-
mance of EHHO than other algorithms is seen obviously. 
One of the main reasons for this high-quality result is to 

Table 10  Statistical results for four optimization algorithms

Bold values indicate the best results

Bearing 
number

Optimi-
zation 
method

Best Mean Worst STD

30204 EHHO 34,538.27 34,113.06 32,818.62 530.10
HHO 32,557.60 25,667.99 17,659.57 5590.53
WOA 31,982.23 27,132.90 20,411.60 3410.19
SCA 31,500.79 30,394.68 28,808.47 852.50

30205 EHHO 39,864.26 39,616.49 38,925.36 326.06
HHO 36,069.50 24,354.68 17,916.79 6067.16
WOA 38,224.26 32,832.10 27,058.17 3565.19
SCA 36,641.31 35,693.81 34,614.29 746.37

32205 EHHO 44,818.52 44,619.33 43,782.81 413.32
HHO 42,703.37 34,546.78 19,051.47 8463.81
WOA 41,498.62 36,313.34 20,771.22 7514.12
SCA 42,449.72 40,926.80 39,385.14 1092.16

322/28 EHHO 52,898.87 52,747.44 51,864.48 338.20
HHO 51,313.38 38,916.64 26,217.00 9552.93
WOA 51,360.63 40,454.10 27,595.49 8753.15
SCA 49,833.04 47,829.98 46,190.28 1294.12

Fig. 9  Comparison of design 
variables: standard catalog, GA, 
and EHHO
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have a mature population at the beginning of the optimiza-
tion process, which is attributed to the chaotic initialization. 
Another reason for the improved efficiency is due to using 
the flower pollination and 2-Opt algorithms. Using two other 
techniques, Gaussian mutation and chaotic local search, can 
facilitate the optimization process for finding the optimum 
solution at the end of the algorithm. Local optimum is a 
significant obstacle experienced by most algorithms; hav-
ing an efficient structure for avoiding local optima is one of 
the advantages of suitable algorithms. Using a chaotic local 
search technique can assist the algorithm in preventing falls 
in the local optima. It is noteworthy that the structure of 
SCA is not appropriate for this TRB problem and has mini-
mum convergence result compared to the other algorithms.

To see the proficiency of the algorithms in more detail, 
a statistical analysis is performed for some cases of tapered 

roller bearings. Table 10 shows the result of this analysis in 
terms of standard deviation (STD), worst solution, and best 
mean. The result of statistical analysis demonstrates that the 
EHHO has the lowest STD among the other algorithms. The 
lowest STD demonstrates that EHHO can easily find the 
maximum solution in every run of the optimization process 
and proves the robustness of this algorithm. Also, the best, 
mean, and worst solutions belong to the EHHO algorithm. 
After the EHHO algorithm, the SCA ranks second in terms 
of the lowest STD; however, SCA obtains the lowest best 
result.

LL lower limit, UL upper limit
Figure 9 compares the design variables from the enhanced 

Harris hawk algorithm (EHHO), genetic algorithm (GA), 
and the standard catalogue. The graph in Fig. 9 shows that 
the EHHO algorithm successfully maximizes the fatigue 

Table 11  Statistical result for 
tapered roller bearing

Bold values indicate the best results

Bearing number Optimization method Best Mean Worst STD

32207 HHO 68,199.43 50,422.74 42,447.67 8681.153
Cha-HHO 66,916.79 48,827.31 44,035.26 7836.42
Gau-HHO 62,472.2 55,858.61 52,381.36 3833.961
CLS-HHO 58,549.38 51,582.96 34,497.03 9443.249
Cha-Gau-CLS-HHO 63,363.86 54,171.72 45,688.48 5623.82
DE-Pol-HHO 72,777.02 69,517.8 65,042.16 2953.21
Cha-DE-Pol-HHO 74,132.74 69,715.49 65,524.29 2753.776
Gau-DE-Pol-HHO 76,651.93 73,863.27 65,384.35 3386.548
CLS-DE-Pol-HHO 73,378.96 68,353.78 62,805.36 3852.129
EHHO 77,091.46 75,709.29 73,063.19 1264.924

30307 HHO 62,170.57 45,428.87 39,287.2 8619.527
Cha-HHO 74,761.57 53,460.88 49,441.91 8823.459
Gau-HHO 65,172.04 57,959.72 50,047.24 3569.721
CLS-HHO 66,477.57 57,054.35 56,007.32 3310.984
Cha-Gau-CLS-HHO 77,002.43 59,512.23 53,099.14 9651.839
DE-Pol-HHO 79,627.92 71,732.16 46,078.51 10,340.03
Cha-DE-Pol-HHO 81,008.2 76,080.66 68,414.83 4466.655
Gau-DE-Pol-HHO 81,417.25 76,767.38 59,460.96 6366.401
CLS-DE-Pol-HHO 81,663.6 74,097.82 70,330.55 3768.046
EHHO 83,036.86 78,970.02 75,167.9 2782.379

32208 HHO 73,873.29 56,993.26 42,935.66 8777.11
Cha-HHO 74,331.65 57,761.36 54,570.15 6962.738
Gau-HHO 70,593.91 60,848.55 55,732.52 6369.845
CLS-HHO 68,139.23 59,715.36 46,030.73 7312.302
Cha-Gau-CLS-HHO 71,781.09 67,488.67 65,621.82 1777.807
DE-Pol-HHO 83,381.08 77,385.17 70,067.29 4811.884
Cha-DE-Pol-HHO 85,393.4 78,315.92 68,618.12 6102.392
Gau-DE-Pol-HHO 85,506.08 83,351.81 78,067.71 2574.536
CLS-DE-Pol-HHO 84,901.93 76,804.31 66,011.37 5429.324
EHHO 86,603.7 84,233.2 80,135.14 2476.326
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life of bearing with a lower number of rollers. Also, Fig. 9 
shows that the EHHO algorithm uses a higher mean diam-
eter value and has sufficient length compared to GA and 
bearing standard.

Stability evaluation is one of the vital steps of perfor-
mance verification [102, 103]. For quality evaluation metrics 
[104], we considered the average of solutions as the primary 
metric to judge the accuracy of the performance. We fixed 
fair judgments as per references [24, 85, 105, 106]. For hav-
ing an exhaustive vision of the proposed algorithm, differ-
ent algorithms are created with separate techniques used in 
EHHO. These algorithms are created based on techniques 
including chaotic initialization, Gaussian mutation, defer-
ential evaluation, pollination algorithm, and chaotic local 
search mentioned in the optimization methodology section. 
The optimization process is performed for these algorithms 
in 500 iterations, and the results are summarized in Table 11. 
The convergence curves are shown in Fig. 10, in which using 
strategies of chaotic local search, chaotic initialization, and 
Gaussian mutation with standard HHO does not affect the 
accuracy significantly. By replacing the pollination algo-
rithm and deferential evolution formulation with the hunting 
strategies of the Harris hawk algorithm, the results improve 
significantly. The EHHO, which is a combination of all the 
mentioned techniques, has the best results compared to the 
other ten algorithms in terms of precision, and its perfor-
mance is not trapped to local optima. The STD result of 
EHHO also illustrates the performance of every element of 
this algorithm.

5.2  Engineering problems

There are many problems that their feature space is more 
complex than the assessed benchmark spaces [107–111]. 
Despite benchmark cases, engineering problems always 
involve some variables that are constrained [28, 112–115]. 
For testing and benchmarking the proposed algorithm, some 
popular and perplexing engineering functions are common 
in the literature. These engineering functions can challenge 
every optimization algorithm with their complexity in their 
structure. Most of these problems have more than three vari-
ables and constraints with many local optima. In this part 
of the paper, five well-known and challenging engineering 
problems are evaluated by the EHHO algorithm to exam-
ine the effectiveness and capability of this algorithm. The 
aspects of the engineering problems are described in the 
next subsections.

a 

b 

c 

Fig. 10  Convergence curve for ten algorithms. a 32207, b 30307 c 
32208
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Fig. 11  Cantilever beam design

Table 12  Comparison results 
for cantilever beam design

Bold value indicates the best results

Optimization method Optimum variables Optimum cost

h
1

h
2

h
3

h
4

h
5

Weight

EHHO 6.0143 5.3029 4.4964 3.5053 2.1548 1.33995825
HHO 6.1016 5.343 4.4237 3.4533 2.1582 1.3403595
MFA [116] 5.98487 5.3167269 4.49733 3.5136165 2.161620 1.3399881
CS [117] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999
SOS [118] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996

Table 13  Comparison results 
for pressure vessel design

Bold value indicates the best results

Optimization method Optimum variables Optimum cost

Ts Th r L Fabrication cost

EHHO 0.77817 0.38465 40.3196 200 5885.36355
HHO [50] 0.81758 0.40729 42.09174 176.75873 6000.46259
CMVHHO [120] 0.849756 0.421472 43.900722 155.517156 6039.6918
ADHHO [121] 0.87015 0.43114 45.01254 143.5317 6072.56
CCMWOA [97] 0.77966 0.38561 40.34738 199.6141 5895.2039
WOA [88] 0.81250 0.43750 42.09820 176.6389 6059.7410
VPLSCA [122] 0.8152 0.4265 42.0851 176.73154 6042.711935
UBSCIW [123] 0.7798 0.3866 40.3884 199.0685 5889.2305
ESSA [124] 0.781463 0.386278 40.4903 197.63744 5890.9885

Table 14  Results for tension/
compression spring design

Bold value indicates the best results

Optimization method Optimum variables Optimum cost

d D N Weight

EHHO 0.0516751748 0.356383766 11.30857249 0.012665236
HHO 0.05179 0.3593 11.13885 0.012665443
MHHO [125] 0.051654 0.355881 11.33883 0.01266619
CCMWOA [97] 0.051843 0.360444 11.07410 0.0126660
WOA [88] 0.051207 0.345215 12.0043032 0.0126763
ESSA [124] 0.051719 0.357434 11.247123 0.0126653
GCHHO [59] 0.0516479 0.355729 11.3471231 0.012665264
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5.2.1  Cantilever beam

Figure 11 shows the structure of this benchmarked prob-
lem. This beam is exposed to the load at the right end. Five 
variables of beam design contain the vertical length of the 
connected boxes. The range of the variables is from 0 to 100. 
The target is to minimize the weight of the entire design. The 
optimization scheme of this problem is given in Eq. (64) 
below:

(64)

�⃗x =
[
h1, h2, h3, h4, h5

]
,

Minimize ∶ f
(
�⃗x
)
= 0.0624

(
x1 + x2 + x3 + x4 + x5

)
,

Subject to ∶ G
(
�⃗x
)
=

61

x3
1

+
37

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0,

0 ≤ xi ≤ 100.

The optimum solution of beam design is reported in 
Table 12. Moreover, Table 12 contains the optimum design 
results of other algorithms such as the modified firefly algo-
rithm [116], crow search (CS) [117], and symbiotic organisms 
search (SOS) [118], and the standard Harris Hawk on the beam 
structure. The EHHO found 1.33995825 as the optimal solu-
tion of weight for the cantilever beam design, indicating the 
efficiency of this algorithm compared to the modified firefly 
algorithm, crow search algorithm, and symbiotic organisms 
algorithm. This case may be handy for building structures and 
how engineers can deal with a component [119].

5.2.2  Pressure vessel

The cost of construction of every piece of equipment is substan-
tial for manufacturers, and the minimization of expenses can be 

Table 15  Results for welded 
beam design

Bold value indicates the best results

Optimization method Optimum variables Optimum cost

h l t b Fabrication cost

EHHO 0.2057003 3.4711372 9.03668181 0.20572935 1.72490231
HHO 0.204039 3.531061 9.027463 0.206147 1.73199057
CMVHHO [120] 0.205331 3.4787 9.039544 0.205723 1.726023
WOA [88] 0.205396 3.484293 9.037426 0.206276 1.730499

Fig. 12  Speed reducer design 
problem

Table 16  Results for speed 
reducer design

Bold value indicates the best results

Optimization method Optimum variables Optimum cost

x
1

x
2

x
3

x
4

x
5

x
6

x
7

Weight

EHHO 3.5 0.7 17 7.3 7.7153 3.3502 5.2866 2994.4710
HHO 3.50253 0.7 17 7.3 7.9206 3.3538 5.2867 3000.9479
m-HHO [62] 3.5 0.7 17 7.3 7.8 3.35127 5.28668 2996.6162
GLF-GWO [126] 3.5000091 0.7 17 7.3 7.8 3.3502335 5.2866856 2996.3680
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formulated as an interesting problem. The variables’ vector of 
the pressure vessel problem contains some critical parameters 
such as the thickness of the head and shell ( Ts and Th , respec-
tively) and cylindrical curvature radius ( r ) and distance ( L ). The 
limitation of the first and second variables is between 0 and 99, 
and the criteria for the third and fourth variables are between 10 
and 200. The layout for this structure is as follows:

The result for this problem is presented in Table 13. It is 
obvious that the fabrication cost of the pressure vessel design 
related to EHHO is better than that of other algorithms men-
tioned in Table 13. Note that EHHO has improved the opti-
mal solution by 2% compared to the standard HHO.

5.2.3  Spring geometry

The objective function of this design problem is to minimize the 
weight of a tension/compression spring. Shear stress and deflec-
tion influence the design of the spring, which can be related to 
constraints of spring. Three variables of coil number ( N ), cord 
diameter ( d ), and mean diameter ( D ) are chosen in the design 
vector to provide the lowest weight for the spring. The range for 
( d ) is 0.05–2, for ( D ) is 0.25–1.3, and for the last variable ( N ) is 
2–15. The spring formulation is derived as below:

(65)

�⃗x =
[
x1, x2, x3, x4

]
=
[
Ts, Th,R, L

]
,

Minimize ∶ f
(
�⃗x
)
= 0.6224x1x3x4 + 1.7781x2

1
x4 + 3.1661x4x

2
1
+ 19.84x4x

2
1
,

Subject to ∶ h1
(
�⃗x
)
= −x1 + 0.0193x3 ≤ 0,

h2
(
�⃗x
)
= −x2 + 0.00954x3 ≤ 0,

h3
(
�⃗x
)
= −𝜋x4x

2
3
−

4

3
𝜋x3

3
+ 1296000 ≤ 0,

h4
(
�⃗x
)
= x4 − 240 ≤ 0,

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

(66)

�⃗x =
[
x1, x2, x3

]
= [d,D,N],

Minimize ∶ f
(
�⃗x
)
= x2

1
x2x3 + 2x2

1
x2,

Subject to ∶ h1
(
�⃗x
)
= 1 −

x3
2
x3

71785x4
1

≤ 0,

h2
(
�⃗x
)
=

x3
2
x3

12566(x2x
3
1
− x4

1
)
+

1

5108x2
1

− 1 ≤ 0,

h3
(
�⃗x
)
= 1 −

140.45x1

x2
2
x3

≤ 0,

h4
(
�⃗x
)
=

x1 + x2

1.5
− 1 ≤ 0,

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

Table 14 summarizes the value obtained from the optimi-
zation process. The EHHO diminishes the weight to an accu-
racy of 0.01266 kg compared to the other algorithms such 
as modified whale algorithm (CCMWOA) [97], enhanced 
salp swarm (ESSA) [124], whale algorithm (WOA) [88], 
and modified HHO (GCHHO) [59].

5.2.4  Welded beam

There are 4 design variables for the welded beam design 
optimization problem (thickness, b , height, t  , length of 
the bar,l  , with weldh ). There are 7 constraints, and most 
of them relate to load, stresses on the bar, and end deflec-
tion on the spring. The structural formulation, range of 
variables, and some constant parameters are provided 
by Eq. (67):

where

�⃗x =
[
x1, x2, x3, x4

]
= [h, l, t, b],

Minimize ∶ f
(
�⃗x
)
= 1.10471x2x

2
1
+ 0.04811x3x4

(
14 + x2

)
,

Subject to ∶ h1
(
�⃗x
)
= 𝜏

(
�⃗x
)
− 𝜏max ≤ 0,

h2
(
�⃗x
)
= 𝜎

(
�⃗x
)
− 𝜎max ≤ 0,

h3
(
�⃗x
)
= 𝛿

(
�⃗x
)
− 𝛿max ≤ 0,

h4
(
�⃗x
)
= x1 − x4 ≤ 0,

h5
(
�⃗x
)
= P − Pc

(
�⃗x
)
≤ 0,

h6
(
�⃗x
)
= 0.125 − x1 ≤ 0,

h7
(
�⃗x
)
= 0.10471x2

1
+ 0.04811x3x4

(
14 + x2

)
− 5 ≤ 0,

0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2,
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The results in Table 15 show the excellence of the pro-
posed algorithm.

5.2.5  Speed reducer

The scheme of the speed reducer is depicted in Fig. 12. 
The speed reducer shaft is exposed to stress and transverse 
deflection, and the gear teeth tolerate stresses such as bend-
ing stress, which can be considered constraints. The opti-
mization problem for the speed reducer problem has seven 
variables and 11 nonlinear constraints. The variables are 
explained in Fig. 12. The formulation for the optimization 
design of the speed reducer can be expressed in Eq. (68):

The speed reducer’s optimum weight is reported in 
Table 16 for the algorithms. The EHHO reduces the opti-
mum cost to 2994.4710 kg, which is a competitive result 
compared to other algorithms.

(67)
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P = 6000lb, L = 14in, 𝛿max = 0.25in,E = 30 × 106psi,G = 12 × 106psi, 𝜏max13600psi, 𝜎max = 30000psi.

(68)
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2.6 ≤ x1 ≤ 3.6 , 0.7 ≤ x2 ≤ 0.8 , 17 ≤ x3 ≤ 28 , 7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3 , 2.9 ≤ x6 ≤ 3.9 , 5 ≤ x7 ≤ 5.5

6  Conclusions and future works

In this paper, a novel algorithm is proposed to enhance the 
performance of the Harris hawk optimization algorithm 
(HHO) based on new features, which improve the explora-
tion and exploitation phases of the original HHO algorithm. 
At first, chaotic initialization is used to explore the search 
area extensively to cover and generate all possible solutions 
equally. In this way, a mature population is created. After 
that, two of the Harris hawk pouncing strategies are changed 
to generate more appropriate agents for updating the popu-
lation. Also, the Gaussian strategy makes the update of the 
population boosted. At the end of the proposed algorithm, 

a chaotic local search with the shrinking mode is exploited 
to avoid possible local optima. The proposed algorithm is 
tested on tapered roller bearings successfully. The objective 
function is related to the maximization of the fatigue life 
of TRB. It contains nine variables and 26 constraints. The 
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results show that the best result can be obtained by the appli-
cation of the enhanced Harris hawk algorithm (EHHO) on 
the design optimization of the fatigue life of TRB. In addi-
tion, the mentioned algorithm is tested on some common 
engineering problems in the literature. Similarly, the opti-
mization results are improved using the EHHO algorithm 
compared to the algorithms from the literature. Therefore, 
the proposed algorithm can be used in complex engineering 
problems where there are many design variables.
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