Skip to main content
Log in

Improved dynamical response of functionally graded GPL-reinforced sandwich beams subjected to external excitation via nonlinear dispersion pattern

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper investigates sandwich beams' forced vibrations reinforced with graphene platelets (GPLs) based on higher-order shear deformation theory. A novel nonlinear reinforcement distribution based on the power-law method is proposed to model functionally graded (FG) graphene platelet reinforced composite face sheets. Due to the manufacturing constraints, the face sheets are considered laminated so that the weight fraction of GPLs in each layer is constant and varies functionally along with the thickness of the beam. Also, the effective material properties of each layer have been calculated using the Halpin Tsai micro-mechanical model. The nonlinear partial equations of motion are derived using Hamilton's principle in the third-order laminated beam model framework. Afterward, the governing equations of motion are discretized to a system of ordinary nonlinear equations by applying Galerkin's method and solved using an analytical approach. Numerical results obtained from the presented work are compared and validated with the literature. The results show that the proposed model can predict the desired GPLs distribution pattern in the face sheets according to the sandwich layers thickness ratio, the amount of the external force, and the total weight fraction of the GPLs. Also, it is found that increasing the concentration of GPLs in the outer layers can significantly increase the vibration frequency of the system and reduce its nonlinearity. However, the core-to-beam thickness ratio is highly effective in how the reinforcement pattern affects the system behavior. Besides, the external excitation characteristics have notable effects on the system's behavior, and multivaluedness in response will be observed depending on the frequency of excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys Rev B 85:125428. https://doi.org/10.1103/PhysRevB.85.125428

    Article  Google Scholar 

  2. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon N Y 48:2127–2150. https://doi.org/10.1016/j.carbon.2010.01.058

    Article  Google Scholar 

  3. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281. https://doi.org/10.1557/mrs.2012.203

    Article  Google Scholar 

  4. Falkovsky LA (2008) Optical properties of graphene and IV–VI semiconductors. Phys Usp 51:887–897. https://doi.org/10.1070/pu2008v051n09abeh006625

    Article  Google Scholar 

  5. Zhu Y, Murali S, Cai W et al (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  6. Wei J, Vo T, Inam F (2015) Epoxy/graphene nanocomposites - processing and properties: a review. RSC Adv 5:73510–73524. https://doi.org/10.1039/c5ra13897c

    Article  Google Scholar 

  7. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  Google Scholar 

  8. Rafiee MA, Rafiee J, Wang Z et al (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890. https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  9. Yavari F, Rafiee MA, Rafiee J et al (2010) Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl Mater Interfaces 2:2738–2743. https://doi.org/10.1021/am100728r

    Article  Google Scholar 

  10. Hu Z, Tong G, Lin D et al (2016) Graphene-reinforced metal matrix nanocomposites—a review. Mater Sci Technol (UK) 32:930–953. https://doi.org/10.1080/02670836.2015.1104018

    Article  Google Scholar 

  11. Kitipornchai S, Chen D, Yang J (2017) Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater Des 116:656–665. https://doi.org/10.1016/j.matdes.2016.12.061

    Article  Google Scholar 

  12. Sahmani S, Fattahi AM, Ahmed NA (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35:1173–1189. https://doi.org/10.1007/s00366-018-0657-8

    Article  Google Scholar 

  13. Shariati A, Qaderi S, Ebrahimi F, Toghroli A (2020) On buckling characteristics of polymer composite plates reinforced with graphene platelets. Eng Comput. https://doi.org/10.1007/s00366-020-00992-2

    Article  Google Scholar 

  14. Feng C, Kitipornchai S, Yang J (2017) Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng Struct 140:110–119. https://doi.org/10.1016/j.engstruct.2017.02.052

    Article  Google Scholar 

  15. Wang Y, Fu T, Zhang W (2021) An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: applications to dynamic stability analysis. Thin-Walled Struct 160:107400. https://doi.org/10.1016/j.tws.2020.107400

    Article  Google Scholar 

  16. Wang Y, Xie K, Fu T, Shi C (2019) Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos Struct 209:928–939. https://doi.org/10.1016/j.compstruct.2018.11.014

    Article  Google Scholar 

  17. Zenkour AM, Sobhy M (2021) Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng Comput. https://doi.org/10.1007/s00366-020-01224-3

    Article  Google Scholar 

  18. Habibi M, Hashemabadi D, Safarpour H (2019) Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur Phys J Plus 134:307. https://doi.org/10.1140/epjp/i2019-12742-7

    Article  Google Scholar 

  19. Gao K, Gao W, Chen D, Yang J (2018) Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos Struct 204:831–846. https://doi.org/10.1016/j.compstruct.2018.08.013

    Article  Google Scholar 

  20. Qaderi S, Ebrahimi F (2020) Vibration analysis of polymer composite plates reinforced with graphene platelets resting on two-parameter viscoelastic foundation. Eng Comput. https://doi.org/10.1007/s00366-020-01066-z

    Article  Google Scholar 

  21. Allahkarami F (2020) Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment. Eng Comput. https://doi.org/10.1007/s00366-020-01169-7

    Article  Google Scholar 

  22. Wu Q, Chen H, Gao W (2020) Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams. Eng Comput 36:1739–1750. https://doi.org/10.1007/s00366-019-00794-1

    Article  Google Scholar 

  23. Birman V, Kardomateas GA (2018) Review of current trends in research and applications of sandwich structures. Compos Part B Eng 142:221–240. https://doi.org/10.1016/j.compositesb.2018.01.027

    Article  Google Scholar 

  24. Hamed MA, Abo-bakr RM, Mohamed SA, Eltaher MA (2020) Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Eng Comput 36:1929–1946. https://doi.org/10.1007/s00366-020-01023-w

    Article  Google Scholar 

  25. Solyaev Y, Lurie S, Koshurina A et al (2019) On a combined thermal/mechanical performance of a foam-filled sandwich panels. Int J Eng Sci 134:66–76. https://doi.org/10.1016/j.ijengsci.2018.10.010

    Article  MathSciNet  MATH  Google Scholar 

  26. Nematollahi MS, Mohammadi H (2019) Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory. Int J Mech Sci 156:31–45. https://doi.org/10.1016/j.ijmecsci.2019.03.022

    Article  Google Scholar 

  27. Li Y, Feng Z, Huang L et al (2019) Additive manufacturing high performance graphene-based composites: a review. Compos Part A Appl Sci Manuf 124:105483. https://doi.org/10.1016/j.compositesa.2019.105483

    Article  Google Scholar 

  28. Sobhy M, Zenkour AM (2018) Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Compos Part B Eng 154:492–506. https://doi.org/10.1016/j.compositesb.2018.09.011

    Article  Google Scholar 

  29. Arefi M, Najafitabar F (2021) Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method. Thin-Walled Struct 158:107200. https://doi.org/10.1016/j.tws.2020.107200

    Article  Google Scholar 

  30. Wang Z-X, Shen H-S (2018) Nonlinear vibration of sandwich plates with FG-GRC face sheets in thermal environments. Compos Struct 192:642–653. https://doi.org/10.1016/j.compstruct.2018.03.043

    Article  Google Scholar 

  31. Yu Y, Shen H-S, Wang H, Hui D (2018) Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments. Compos Part B Eng 135:72–83. https://doi.org/10.1016/j.compositesb.2017.09.045

    Article  Google Scholar 

  32. Nejadi MM, Mohammadimehr M, Mehrabi M (2021) Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow. Alexandria Eng J 60:1945–1954. https://doi.org/10.1016/j.aej.2020.11.042

    Article  Google Scholar 

  33. Karimiasl M, Ebrahimi F, Mahesh V (2019) Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via Homotopy Perturbation Method. Eng Comput. https://doi.org/10.1007/s00366-019-00841-x

    Article  Google Scholar 

  34. Li Q, Wu D, Chen X et al (2018) Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int J Mech Sci 148:596–610. https://doi.org/10.1016/j.ijmecsci.2018.09.020

    Article  Google Scholar 

  35. Nematollahi MS, Mohammadi H, Dimitri R, Tornabene F (2020) Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams. Appl Sci 10:1–22. https://doi.org/10.3390/app10165669

    Article  Google Scholar 

  36. Majidi-Mozafari K, Bahaadini R, Saidi AR, Khodabakhsh R (2020) An analytical solution for vibration analysis of sandwich plates reinforced with graphene nanoplatelets. Eng Comput. https://doi.org/10.1007/s00366-020-01183-9

    Article  Google Scholar 

  37. Wang Y, Xie K, Fu T, Shi C (2019) Bending and elastic vibration of a novel functionally graded polymer nanocomposite beam reinforced by graphene nanoplatelets. Nanomater 2019:9

    Google Scholar 

  38. Yang Y, Chen B, Lin W et al (2021) Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp Sci Technol 110:106495. https://doi.org/10.1016/j.ast.2021.106495

    Article  Google Scholar 

  39. Keshtegar B, Farrokhian A, Kolahchi R, Trung N-T (2020) Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels. Eur J Mech A/Solids 82:104010. https://doi.org/10.1016/j.euromechsol.2020.104010

    Article  MathSciNet  MATH  Google Scholar 

  40. Deb Singha T, Rout M, Bandyopadhyay T, Karmakar A (2021) Free vibration of rotating pretwisted FG-GRC sandwich conical shells in thermal environment using HSDT. Compos Struct 257:113144. https://doi.org/10.1016/j.compstruct.2020.113144

    Article  Google Scholar 

  41. Nieto A, Bisht A, Lahiri D et al (2017) Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev 62:241–302. https://doi.org/10.1080/09506608.2016.1219481

    Article  Google Scholar 

  42. Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352. https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  43. Guzmán de Villoria R, Miravete A (2007) Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater 55:3025–3031. https://doi.org/10.1016/j.actamat.2007.01.007

    Article  Google Scholar 

  44. Wang Y, Xie K, Fu T, Zhang W (2021) A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads. Eng Comput. https://doi.org/10.1007/s00366-020-01238-x

    Article  Google Scholar 

  45. Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. Taylor & Francis, Hoboken

    Book  Google Scholar 

  46. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. Taylor & Francis, Hoboken

    Book  Google Scholar 

  47. Shen H-S, Lin F, Xiang Y (2017) Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn 90:899–914. https://doi.org/10.1007/s11071-017-3701-0

    Article  Google Scholar 

  48. Zhen W, Wanji C (2008) An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams. Compos Struct 84:337–349. https://doi.org/10.1016/j.compstruct.2007.10.005

    Article  Google Scholar 

  49. Li Z-M, Qiao P (2014) On an exact bending curvature model for nonlinear free vibration analysis shear deformable anisotropic laminated beams. Compos Struct 108:243–258. https://doi.org/10.1016/j.compstruct.2013.09.034

    Article  Google Scholar 

  50. Vo TP, Thai H-T (2012) Free vibration of axially loaded rectangular composite beams using refined shear deformation theory. Compos Struct 94:3379–3387. https://doi.org/10.1016/j.compstruct.2012.05.012

    Article  Google Scholar 

  51. Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:64120. https://doi.org/10.1103/PhysRevB.76.064120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The coefficients \(g_{{11}}\), \(g_{{12}}\), … in Eqs. (17)–(19) can be defined as

$$ g_{{11}} = \frac{{n^{2} \pi ^{2} \lambda _{{11}} }}{{2L}}, $$
(38)
$$ g_{{12}} = \frac{{n^{3} \pi ^{3} \lambda _{{13}} }}{{2L^{2} }}, $$
(39)
$$ g_{{13}} = \frac{{\left( {1 + \left( { - 1} \right)^{{n + 1}} } \right)n^{2} \pi ^{2} \lambda _{{11}} }}{{3L^{2} }}, $$
(40)
$$ g_{{14}} = \frac{{n^{2} \pi ^{2} \lambda _{{12}} }}{{2L}}, $$
(41)
$$ g_{{21}} = \frac{{n^{2} \pi ^{2} \lambda _{{21}} }}{{2L}}, $$
(42)
$$ g_{{22}} = \frac{{n^{3} \pi ^{3} \lambda _{{23}} }}{{2L^{2} }} - \frac{{n\pi \lambda _{{24}} }}{2}, $$
(43)
$$ g_{{23}} = \frac{{\left( {1 + \left( { - 1} \right)^{{n + 1}} } \right)n^{2} \pi ^{2} \lambda _{{21}} }}{{3L^{2} }}, $$
(44)
$$ g_{{24}} = \frac{{n^{2} \pi ^{2} \lambda _{{22}} }}{{2L}} - \frac{{L\lambda _{{24}} }}{2}, $$
(45)
$$ g_{f} = \frac{{\left( {1 + \left( { - 1} \right)^{{n + 1}} } \right)L}}{{n\pi }}, $$
(46)
$$ g_{{31}} = \frac{{n^{3} \pi ^{3} \lambda _{{31}} }}{{2L^{2} }}, $$
(47)
$$ g_{{32}} = \frac{{n^{4} \pi ^{4} \lambda _{{33}} }}{{2L^{3} }} - \frac{{n^{2} \pi ^{2} \lambda _{{34}} }}{{2L}} $$
(48)
$$ g_{{33}} = \frac{{n^{2} \pi ^{2} \left( { - 1 + \left( { - 1} \right)^{n} + 4\left( {2 + \left( { - 1} \right)^{n} } \right){\text{Sin}}^{4} \left( {\frac{{n\pi }}{2}} \right)} \right)\lambda _{{35}} }}{{3L^{2} }}, $$
(49)
$$ g_{{34}} = \frac{{4\left( { - 2 + \left( { - 1} \right)^{{n + 1}} } \right)n^{3} \pi ^{3} {\text{Sin}}^{4} \left( {\frac{{n\pi }}{2}} \right)\lambda _{{31}} }}{{3L^{3} }}, $$
(50)
$$ g_{{35}} = - \frac{{3n^{4} \pi ^{4} \lambda _{{35}} }}{{16L^{3} }}, $$
(51)
$$ g_{{36}} = \frac{{n^{3} \pi ^{3} \lambda _{{32}} }}{{2L^{2} }} - \frac{{n\pi \lambda _{{34}} }}{2}, $$
(52)
$$ g_{{37}} = \frac{{n^{2} \pi ^{2} \left( { - 1 + \left( { - 1} \right)^{n} + 4\left( {2 + \left( { - 1} \right)^{n} } \right){\text{Sin}}^{4} \left( {\frac{{n\pi }}{2}} \right)} \right)\lambda _{{36}} }}{{3L^{2} }}, $$
(53)
$$ g_{{38}} = \frac{{n\pi \lambda _{{38}} }}{2}, $$
(54)
$$ g_{{39}} = \frac{{n^{2} \pi ^{2} \lambda _{{310}} }}{{2L}} - \frac{{L\lambda _{{37}} }}{2}, $$
(55)
$$ g_{{310}} = \frac{{n\pi \lambda _{{39}} }}{2}. $$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Nematollahi, M.S. Improved dynamical response of functionally graded GPL-reinforced sandwich beams subjected to external excitation via nonlinear dispersion pattern. Engineering with Computers 38 (Suppl 4), 3011–3023 (2022). https://doi.org/10.1007/s00366-021-01445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01445-0

Keywords

Navigation