Skip to main content
Log in

Enhanced harmony search algorithm with non-linear control parameters for global optimization and engineering design problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Harmony search algorithm (HSA), inspired by the behaviors of music improvisation process, is a widely used metaheuristic to solve global optimization problems arises in various fields. The reason of its popularity is its simplicity of algorithm structure and good performance. However, the conventional harmony search algorithm (HSA) experiences prone towards the local optima, tedious task of tuning parameters, and premature convergence. To overcome all these drawbacks of conventional HSA and further improve the precision of numerical results, a new variant of the HSA called modified harmony search algorithm (MHSA) is proposed in the present study. This MHSA utilizes the valuable information stored in the harmony memory and modifies the search strategy to make an efficient search procedure by adopting a new formulation to the pitch adjustment process, randomization process, harmony memory considering rate (HMCR), and pitch adjustment rate (PAR). The experimental validation and comparative performance study with conventional HSA, variants of HSA such as adaptive harmony search with best based search strategy (ABHS), enhanced self-adaptive global-best harmony search (ESGHS), novel self-adaptive harmony search (NSHS), parameter adaptive harmony search (PAHS), Gaussian global-best harmony search algorithm (GGHS) and other metaheuristics such as sine cosine algorithm (SCA), grey wolf optimizer (GWO), comprehensive learning particle swarm optimization (CLPSO), gbest-guided artificial bee colony (GABC), and covariance matrix adaptation evolution strategy (CMA-ES) is conducted on a set of 23 well-known benchmark problems. In addition to this benchmarking, the proposed MHSA is also used to solve three structural engineering design problem. The statistical test and convergence behaviour analysis are used to analyze the quality of search and significance of improved accuracy. The comparison illustrates the superior search efficiency of the proposed MHSA than other algorithms as a global optimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079. https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  2. Al-Betar MA, Awadallah MA, Khader AT, Abdalkareem ZA (2015) Island-based harmony search for optimization problems. Expert Syst Appl 42(4):2026–2035

    Article  Google Scholar 

  3. Alatas B (2010) Chaotic harmony search algorithms. Appl Math Comput 216(9):2687–2699

    MATH  Google Scholar 

  4. Arora JS (1989). Introduction to optimum design. New York: McGraw-Hill

    Google Scholar 

  5. Assad A, Deep K (2016) Applications of harmony search algorithm in data mining: a survey. In: Proceedings of fifth international conference on soft computing for problem solving. Springer, pp 863–874

  6. Chakraborty P, Roy GG, Das S, Jain D, Abraham A (2009) An improved harmony search algorithm with differential mutation operator. Fundam Inform 95(4):401–426

    Article  MathSciNet  MATH  Google Scholar 

  7. Das S, Suganthan PN (2010) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  8. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  9. El-Abd M (2013) An improved global-best harmony search algorithm. Appl Math Comput 222:94–106

    MATH  Google Scholar 

  10. Gao L-Q, Li S, Kong X, Zou D-X et al (2014) On the iterative convergence of harmony search algorithm and a proposed modification. Appl Math Comput 247:1064–1095

    MathSciNet  MATH  Google Scholar 

  11. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  12. Guo Z, Yang H, Wang S, Zhou C, Liu X (2018) Adaptive harmony search with best-based search strategy. Soft Comput 22(4):1335–1349

    Article  Google Scholar 

  13. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  Google Scholar 

  14. Hasanipanah M, Keshtegar B, Thai DK, Troung NT (2020) An ANN-adaptive dynamical harmony search algorithm to approximate the flyrock resulting from blasting. Eng Comput 1–13. https://doi.org/10.1007/s00366-020-01105-9

  15. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gen Comput Syst 97:849–872

    Article  Google Scholar 

  16. Jaberipour M, Khorram E (2010) Two improved harmony search algorithms for solving engineering optimization problems. Commun Nonlinear Sci Numer Simul 15(11):3316–3331

    Article  MATH  Google Scholar 

  17. Kannan BK, Kramer SN (1994). An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. 405–411. https://doi.org/10.1115/1.2919393

  18. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  19. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp 1942–1948

  20. Keshtegar B, Etedali S (2018) Nonlinear mathematical modeling and optimum design of tuned mass dampers using adaptive dynamic harmony search algorithm. Struct Control Health Monit 25(7):e2163

    Article  Google Scholar 

  21. Keshtegar B, Hao P, Wang Y, Hu Q (2018) An adaptive response surface method and gaussian global-best harmony search algorithm for optimization of aircraft stiffened panels. Appl Soft Comput 66:196–207

    Article  Google Scholar 

  22. Keshtegar B, Hao P, Wang Y, Li Y (2017a) Optimum design of aircraft panels based on adaptive dynamic harmony search. Thin Walled Struct 118:37–45

    Article  Google Scholar 

  23. Keshtegar B, Ozbakkaloglu T, Gholampour A (2017b) Modeling the behavior of FRP-confined concrete using dynamic harmony search algorithm. Eng Comput 33(3):415–430

    Article  Google Scholar 

  24. Keshtegar B, Sadeq MO (2017) Gaussian global-best harmony search algorithm for optimization problems. Soft Comput 21(24):7337–7349

    Article  Google Scholar 

  25. Khalili M, Kharrat R, Salahshoor K, Sefat MH (2014) Global dynamic harmony search algorithm: GDHS. Appl Math Comput 228:195–219

    MathSciNet  MATH  Google Scholar 

  26. Kumar V, Chhabra JK, Kumar D (2014) Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems. J Comput Sci 5(2):144–155

    Article  MathSciNet  Google Scholar 

  27. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gen Comput Syst 111:300–323

    Article  Google Scholar 

  28. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  29. Luo K (2013) A novel self-adaptive harmony search algorithm. J Appl Math 2013. https://doi.org/10.1155/2013/653749

  30. Luo K, Ma J, Zhao Q (2019) Enhanced self-adaptive global-best harmony search without any extra statistic and external archive. Inf Sci 482:228–247

    Article  Google Scholar 

  31. Mahadevan K, Kannan P (2010) Comprehensive learning particle swarm optimization for reactive power dispatch. Appl Soft Comput 10(2):641–652

    Article  Google Scholar 

  32. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  33. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  34. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  35. Nehdi ML, Keshtegar B, Zhu SP (2019) Nonlinear modeling for bar bond stress using dynamical self-adjusted harmony search optimization. Eng Comput. 1–12. https://doi.org/10.1007/s00366-019-00831-z

  36. Ouyang H-B, Gao L-Q, Li S, Kong X-Y, Wang Q, Zou D-X (2017) Improved harmony search algorithm: LHS. Appl Soft Comput 53:133–167

    Article  Google Scholar 

  37. Salcedo-Sanz S, Pastor-Sánchez A, Del Ser J, Prieto L, Geem Z-W (2015) A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction. Renew Energy 75:93–101

    Article  Google Scholar 

  38. Shahraki A, Ebrahimi SB (2015) A new approach for forecasting enrollments using harmony search algorithm. J Intell Fuzzy Syst 28(1):279–290

    Article  Google Scholar 

  39. Wang C-M, Huang Y-F (2010) Self-adaptive harmony search algorithm for optimization. Expert Syst Appl 37(4):2826–2837

    Article  Google Scholar 

  40. Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput 10(2):151–164

    Article  Google Scholar 

  41. Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014

    Article  Google Scholar 

  42. Wang Y, Liu Y, Feng L, Zhu X (2015) Novel feature selection method based on harmony search for email classification. Knowl Based Syst 73:311–323

    Article  Google Scholar 

  43. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  44. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  45. Nowcki H. Optimization in pre-contract ship design. In: Fujita Y, Lind K, Williams TJ (eds) Computer Applications in the Automation of Shipyard Operation and Ship Design, vol 2. North-Holland, Elsevier, New York, pp 327–338

  46. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864

    Article  Google Scholar 

  47. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173

    MathSciNet  MATH  Google Scholar 

  48. Zou D, Gao L, Wu J, Li S (2010) Novel global harmony search algorithm for unconstrained problems. Neurocomputing 73(16–18):3308–3318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S. Enhanced harmony search algorithm with non-linear control parameters for global optimization and engineering design problems. Engineering with Computers 38 (Suppl 4), 3539–3562 (2022). https://doi.org/10.1007/s00366-021-01467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01467-8

Keywords