Skip to main content
Log in

An adaptive variational multiscale element free Galerkin method for convection–diffusion equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

For very strong convection-dominated problems, stabilized meshless methods such as variational multiscale element-free Galerkin (VMEFG) method may still produce over- and under-shootings near the boundary or interior layers. In this paper, an adaptive VMEFG method is presented to solve convection–diffusion equations with convection-dominated. The adaptive algorithm based on background integration cell locates high gradient region with Zienkiewicz–Zhu indicator and refine the nodes in the region to improve the computational accuracy of VMEFG method. Meanwhile, this adaptive algorithm can also be used in element-free Galerkin (EFG) method. To compare and verify the validity of the proposed adaptive VMEFG method in convection-dominated problem, seven case studies are calculated by the adaptive VMEFG and EFG methods. The numerical experiments show that the proposed adaptive algorithm can not only refine the singularity regions well, but also is simple, effective and efficient for convection-dominated problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Xu M (2018) A modified finite volume method for convection–diffusion–reaction problems. Int J Heat Mass Transf 117:658–668

    Article  Google Scholar 

  2. Tao WQ, He YL, Li ZY, Qu Z (2004) Some recent advances in finite volume approach and their applications in the study of heat transfer enhancement. In: CHT-04-Advances in Computational Heat Transfer III. Proceedings of the third international symposium, Begel House Inc., pp 1–27

  3. Toro EF (2013) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, Berlin

    Google Scholar 

  4. Hesthaven JS (2017) Numerical methods for conservation laws: from analysis to algorithms. SIAM, Philadelphia

    Google Scholar 

  5. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, New York

    Book  Google Scholar 

  6. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1):3–47

    Article  MATH  Google Scholar 

  7. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin

    Google Scholar 

  9. Garg S, Pant M (2018) Meshfree methods: a comprehensive review of applications. Int J Comput Methods 15(04):1830001

    Article  MathSciNet  MATH  Google Scholar 

  10. Patel VG, Rachchh NV (2020) Meshless method—review on recent developments. Mater Today Proc 26:1598–1603

    Article  Google Scholar 

  11. Tey WY, Asako Y, Ng KC, Lam WH (2020) A review on development and applications of element-free Galerkin methods in computational fluid dynamics. Int J Comput Methods Eng Sci Mech 21(5):252–275

    Article  MathSciNet  Google Scholar 

  12. Wu XH, Dai YJ, Tao WQ (2012) MLPG/SUPG method for convection-dominated problems. Numer Heat Transf Part B Fundam 61(1):36–51

    Article  Google Scholar 

  13. Chen ZJ, Li ZY, Tao WQ (2018) A new stability parameter in streamline upwind meshless Petrov–Galerkin method for convection-diffusion problems at large Peclet number. Numer Heat Transf Part B Fundam 74(5):746–764

    Article  Google Scholar 

  14. Zhang XH, Ouyang J (2006) The element free Galerkin method for steady convection dominated problems. Chin Q Mech 27:220–226

    Google Scholar 

  15. Zhang X, Xiang H (2014) Variational multiscale element free Galerkin method for convection–diffusion–reaction equation with small diffusion. Eng Anal Bound Elem 46:85–92

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu G, Tu Z (2002) An adaptive procedure based on background cells for meshless methods. Comput Methods Appl Mech Eng 191(17–18):1923–1943

    Article  MATH  Google Scholar 

  17. Angulo A, Pozo LP, Perazzo F (2009) A posteriori error estimator and an adaptive technique in meshless finite points method. Eng Anal Bound Elem 33(11):1322–1338

    Article  MathSciNet  MATH  Google Scholar 

  18. Shanazari K, Rabie N (2009) A three dimensional adaptive nodes technique applied to meshless-type methods. Appl Numer Math 59(6):1187–1197

    Article  MathSciNet  MATH  Google Scholar 

  19. Shanazari K, Hosami M (2012) Adapting nodes in three dimensional irregular regions for meshless-type methods. Numer Algor 61(1):83–103

    Article  MathSciNet  MATH  Google Scholar 

  20. Davydov O, Oanh DT (2011) Adaptive meshless centres and RBF stencils for Poisson equation. J Comput Phys 230(2):287–304

    Article  MathSciNet  MATH  Google Scholar 

  21. Oanh DT, Davydov O, Phu HX (2017) Adaptive RBF-FD method for elliptic problems with point singularities in 2D. Appl Math Comput 313:474–497

    MathSciNet  MATH  Google Scholar 

  22. Cavoretto R, De Rossi A (2019) Adaptive meshless refinement schemes for RBF-PUM collocation. Appl Math Lett 90:131–138

    Article  MathSciNet  MATH  Google Scholar 

  23. Cavoretto R, De Rossi A (2020) A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs. Comput Math Appl 79:3206–3222

    Article  MathSciNet  MATH  Google Scholar 

  24. Slak J, Kosec G (2019) Adaptive RBF-FD method for Poisson’s equation. WIT Trans Eng Sci 126:149–157

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaennakham S, Chuathong N (2019) An automatic node-adaptive scheme applied with a RBF-collocation meshless method. Appl Math Comput 348:102–125

    MathSciNet  MATH  Google Scholar 

  26. Cavoretto R, De Rossi A (2020) Error indicators and refinement strategies for solving Poisson problems through a RBF partition of unity collocation scheme. Appl Math Comput 369:124824

    MathSciNet  MATH  Google Scholar 

  27. Liu H, Fu M (2013) Adaptive reproducing kernel particle method using gradient indicator for elasto-plastic deformation. Eng Anal Bound Elem 37(2):280–292

    Article  MathSciNet  MATH  Google Scholar 

  28. Jannesari Z, Tatari M (2020) Magnetohydrodynamics (MHD) simulation via an adaptive element free Galerkin method. Eng Comput 20:1–15

    Google Scholar 

  29. Kaufmann T, Engström C, Fumeaux C (2011) Adaptive meshless methods in electromagnetic modeling: a gradient-based refinement strategy. In: Proceedings of the 41st European microwave conference, IEEE 2011, pp 559–562

  30. Jannesari Z, Tatari M (2020) An adaptive strategy for solving convection dominated diffusion equation. Comput Appl Math 39(2):1–15

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang X, Zhang P, Zhang L (2013) An improved meshless method with almost interpolation property for isotropic heat conduction problems. Eng Anal Bound Elem 37(5):850–859

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang L, Ouyang J, Zhang X (2013) The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers. Comput Phys Commun 184(4):1106–1118

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang P, Zhang X, Deng J, Song L (2016) A numerical study of natural convection in an inclined square enclosure with an elliptic cylinder using variational multiscale element free Galerkin method. Int J Heat Mass Transf 99:721–737

    Article  Google Scholar 

  34. Bespalov A, Rocchi L, Silvester D (2020) T-IFISS: a toolbox for adaptive FEM computation. Comput Math Appl. https://doi.org/10.1016/j.camwa.2020.03.005

    Article  MATH  Google Scholar 

  35. Schmidt A (2018) Adaptive mesh refinement in 2D—an efficient implementation in matlab for triangular and quadrilateral meshes. Ph.D. thesis, Master’s thesis, Universität Ulm

  36. Funken SA, Schmidt A (2019) Ameshref: a matlab-toolbox for adaptive mesh refinement in two dimensions. Numerical geometry, grid generation and scientific computing. Springer, Berlin, pp 269–279

    Chapter  Google Scholar 

  37. Funken SA, Schmidt A (2020) Adaptive mesh refinement in 2D—an efficient implementation in matlab. Comput Methods Appl Math 20(3):459–479

    Article  MathSciNet  MATH  Google Scholar 

  38. Elman HC, Silvester DJ, Wathen AJ (2014) Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the fund of Hubei International Science and Technology Cooperation Base of Fish Passage (no. HIBF2020006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The authors approve all the ethics in publishing research works.

Consent for publication

The authors consent for publication of their research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, P., Qin, W. et al. An adaptive variational multiscale element free Galerkin method for convection–diffusion equations. Engineering with Computers 38 (Suppl 4), 3373–3390 (2022). https://doi.org/10.1007/s00366-021-01469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01469-6

Keywords

Mathematics Subject Classification