Skip to main content
Log in

An improved elephant herding optimization for global optimization problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study proposes a modified Elephant Herding Optimization algorithm to enhance the capability of a classical algorithm for convalescent convergence rate and precision to solve global optimization problems. The proposed Improved Elephant Herding Optimization (IEHO) uses an opposition learning-based initialization to get a better initial population. A sine cosine-based clan updating operator updates the clan individuals towards or outwards their clan leaders. Levy flight distribution with step size controller is applied to perform a local and global search on newly updated positions. The separating operator is modified to maintain a balance between exploration and exploitation of the algorithm. In addition, an elitism strategy is introduced to retain the fittest individual in the consequent iterations. The effectiveness of IEHO is validated on 97 benchmark functions which include unimodal, multimodal, and CEC-BC-2017 functions. The performance of IEHO is compared to fourteen state-of-the-art algorithms along with the winner algorithm of CEC-BC-2017. Friedman's mean rank test shows the dominance of the proposed algorithm for unimodal and multimodal functions. The proposed IEHO algorithm secures the best rank for all 97 benchmark functions. Finally, the applicability of IEHO is shown on five real-world engineering design problems. Results have proven that IEHO performed superior or equivalent to the algorithms reported in the literature and evaluated in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mirjalili S (2016) SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  2. Parejo JA, Ruiz-Cortés A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16:527–561. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  3. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  4. Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120:423–443. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)

    Article  Google Scholar 

  5. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  6. Gogna A, Tayal A (2013) Metaheuristics: review and application. J Exp Theor Artif Intell 25:503–526. https://doi.org/10.1080/0952813X.2013.782347

    Article  Google Scholar 

  7. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8:239–287. https://doi.org/10.1007/s11047-008-9098-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Droste S, Jansen T, Wegener I (2006) Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput Syst 39:525–544. https://doi.org/10.1007/s00224-004-1177-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Askari Q, Saeed M, Younas I (2020) Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst Appl 161:1–27. https://doi.org/10.1016/j.eswa.2020.113702

    Article  Google Scholar 

  10. Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:1–25. https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  11. Mirjalili S, Lewis A (2016) The Whale Optimization Algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  12. Liu M, Zeng W, Zhao J (2011) An overview of dynamic evolutionary multi-objective optimization. Int Rev Comput Softw 6:692–699. https://doi.org/10.1109/FSKD.2016.7603180

    Article  Google Scholar 

  13. Biswas A, Mishra KK, Tiwari S, Misra AK (2013) Physics-inspired optimization algorithms: a survey. J Optim 2013:1–16. https://doi.org/10.1155/2013/438152

    Article  Google Scholar 

  14. Parpinelli RS, Lopes HS (2011) New inspirations in swarm intelligence: A survey. Int J Bio Inspir Comput 3:1–16. https://doi.org/10.1504/IJBIC.2011.038700

    Article  Google Scholar 

  15. Holland JH (1992) Genetic algorithms. Sci Am 267:66–73

    Article  Google Scholar 

  16. Roubos JA, Van Straten G, Van Boxtel AJB (1999) An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance. J Biotechnol 67:173–187. https://doi.org/10.1016/S0168-1656(98)00174-6

    Article  Google Scholar 

  17. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15:55–66. https://doi.org/10.1109/TEVC.2010.2087271

    Article  Google Scholar 

  19. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  20. Koza JR, Bennett FH, Stiffelman O (1999) Genetic programming as a Darwinian invention machine. Lect Notes Comput Sci 1598:93–108. https://doi.org/10.1007/3-540-48885-5_8

    Article  Google Scholar 

  21. Erol OK, Eksin I (2006) A new optimization method: Big Bang-Big Crunch. Adv Eng Softw 37:106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  22. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search Algorithm. Inf Sci (Ny) 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  23. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: Ray optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  24. Farahmandian M, Hatamlou A (2015) Solving optimization problems using black hole algorithm. J Adv Comput Sci Technol 4:68–74. https://doi.org/10.14419/jacst.v4i1.4094

  25. Zhao W, Wang L, Zhang Z (2019) A novel atom search optimization for dispersion coefficient estimation in groundwater. Futur Gener Comput Syst 91:601–610. https://doi.org/10.1016/j.future.2018.05.037

    Article  Google Scholar 

  26. Eberhart R, Kennedy J (1999) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, Nagoya, Japan, pp 39–43. https://doi.org/10.1109/MHS.1995.494215

  27. Dorigo M, Birattari M (2010) Ant colony optimization. Encycl Mach Learn. https://doi.org/10.1007/978-0-387-30164-8_4

    Article  Google Scholar 

  28. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  29. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009. IEEE, Coimbatore, India, pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  30. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29:464–483. https://doi.org/10.1108/02644401211235834

    Article  Google Scholar 

  31. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  33. Wang G-G, Deb S, Coelho LDS (2015) Elephant Herding Optimization. In: Proceedings of the 2015 3rd international symposium on computational and business intelligence (ISCBI). IEEE, Bali, Indonesia, pp 1–5. https://doi.org/10.1109/ISCBI.2015.8

  34. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. CAD Comput Aided Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  35. Venkata Rao R (2016) JAYA: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7:19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  36. Lv W, He C, Li D et al (2010) Election campaign optimization algorithm. Procedia Comput Sci 1:1377–1386. https://doi.org/10.1016/j.procs.2010.04.153

    Article  Google Scholar 

  37. Ramezani F, Lotfi S (2013) Social-based Algorithm (SBA). Appl Soft Comput J 13:2837–2856. https://doi.org/10.1016/j.asoc.2012.05.018

    Article  Google Scholar 

  38. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  39. Wang GG, Deb S, Gao XZ, Dos Santos CL (2016) A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int J Bio Inspir Comput 8:394–409. https://doi.org/10.1504/IJBIC.2016.081335

    Article  Google Scholar 

  40. Gupta S, Singh VP, Singh SP et al (2016) Elephant herding optimization based PID controller tuning. Int J Adv Technol Eng Explor 3:194–198. https://doi.org/10.19101/ijatee.2016.324005

  41. Strumberger I, Bacanin N, Tomic S et al (2017) Static drone placement by elephant herding optimization algorithm. In: 2017 25th Telecommunication Forum (TELFOR). IEEE, pp 1–4. https://doi.org/10.1109/TELFOR.2017.8249469

  42. Alihodzic A, Tuba E, Capor-Hrosik R et al (2018) Unmanned aerial vehicle path planning problem by adjusted elephant herding optimization. In: 2017 25th Telecommunication Forum (TELFOR). IEEE, pp 1–4. https://doi.org/10.1109/TELFOR.2017.8249468

  43. Meena NK, Parashar S, Swarnkar A et al (2018) Improved elephant herding optimization for multiobjective der accommodation in distribution systems. IEEE Trans Ind Inf 14:1029–1039. https://doi.org/10.1109/TII.2017.2748220

    Article  Google Scholar 

  44. Correia SD, Beko M, Cruz LAS, Tomic S (2018) Elephant herding optimization for energy-based localization. Sensors 18:1–14. https://doi.org/10.3390/s18092849

    Article  Google Scholar 

  45. Jafari M, Salajegheh E, Salajegheh J (2019) An efficient hybrid of elephant herding optimization and cultural algorithm for optimal design of trusses. Eng Comput 35:781–801. https://doi.org/10.1007/s00366-018-0631-5

    Article  Google Scholar 

  46. Elhosseini MA, El Sehiemy RA, Rashwan YI, Gao XZ (2019) On the performance improvement of elephant herding optimization algorithm. Knowl Based Syst 166:58–70. https://doi.org/10.1016/j.knosys.2018.12.012

    Article  Google Scholar 

  47. Jayanth J, Shalini VS, Ashok Kumar T, Koliwad S (2019) Land-use/land-cover classification Using Elephant Herding Algorithm. J Indian Soc Remote Sens 47:223–232. https://doi.org/10.1007/s12524-018-00935-x

    Article  Google Scholar 

  48. Li J, Guo L, Li Y, Liu C (2019) Enhancing Elephant herding optimization with novel individual updating strategies for large-scale optimization problems. Mathematics 7:1–35. https://doi.org/10.3390/math7050395

    Article  Google Scholar 

  49. Li W, Wang G-G, Alavi AH (2020) Learning-based elephant herding optimization algorithm for solving numerical optimization problems. Knowl Based Syst 195:1–28. https://doi.org/10.1016/j.knosys.2020.105675

    Article  Google Scholar 

  50. Kamaruzaman AF, Zain AM, Yusuf SM, Udin A (2013) Levy flight algorithm for optimization problems—a literature review. Appl Mech Mater 421:496–501. https://doi.org/10.4028/www.scientific.net/AMM.421.496

    Article  Google Scholar 

  51. Awad NH, Ali MZ, Suganthan PN, et al (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. Technical Report, Nanyang Technological University, Singapore

  52. Kumar A, Misra RK, Singh D (2017) Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix Adapted Retreat Phase. In: 2017 IEEE Congress on Evolutionary Computation (CEC). Donostia, Spain, pp 1835–1842. https://doi.org/10.1109/CEC.2017.7969524

  53. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31:1995–2014. https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  55. Wang GG, Deb S, Dos Santos CL (2018) Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int J Bio Inspir Comput 12:1–22. https://doi.org/10.1504/ijbic.2018.093328

    Article  Google Scholar 

  56. Wang GG (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput 10:151–164. https://doi.org/10.1007/s12293-016-0212-3

    Article  Google Scholar 

  57. Li S, Chen H, Wang M et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  58. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  59. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  MATH  Google Scholar 

  60. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11:86–92. https://doi.org/10.1214/aoms/1177731944

    Article  MathSciNet  MATH  Google Scholar 

  61. Savin NE (1980) The Bonferroni and the Scheffe multiple comparison procedures. Rev Econ Stud 47:255–273. https://doi.org/10.2307/2297112

    Article  MathSciNet  MATH  Google Scholar 

  62. Akhtar S, Tai K, Ray T (2002) A socio-behavioral simulation model for engineering design optimization. Eng Optim 34:341–354. https://doi.org/10.1080/03052150212723

    Article  Google Scholar 

  63. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7:386–396. https://doi.org/10.1109/TEVC.2003.814902

    Article  Google Scholar 

  64. Hedar AR, Fukushima M (2006) Derivative-free filter simulated annealing method for constrained continuous global optimization. J Glob Optim 35:521–549. https://doi.org/10.1007/s10898-005-3693-z

    Article  MathSciNet  MATH  Google Scholar 

  65. Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186:340–356. https://doi.org/10.1016/j.amc.2006.07.105

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang J, Liang C, Huang Y et al (2009) An effective multiagent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Appl Math Comput 211:392–416. https://doi.org/10.1016/j.amc.2009.01.048

    Article  MathSciNet  MATH  Google Scholar 

  67. Aragón VS, Esquivel SC, Coello CAC (2010) A modified version of a T-Cell Algorithm for constrained optimization problems. Int J Numer Methods Eng 84:351–378. https://doi.org/10.1002/nme.2904

    Article  MATH  Google Scholar 

  68. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  69. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:1–21. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  70. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33:735–748. https://doi.org/10.1080/03052150108940941

    Article  Google Scholar 

  71. Coello CAC, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36:219–236. https://doi.org/10.1080/03052150410001647966

    Article  Google Scholar 

  72. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  73. Coello CAC, Mezura-Montes E (2001) Use of dominance-based tournament selection to handle constraints in genetic algorithms. Intelligent engineering systems through artificial neural networks (ANNIE’2001). ASME Press, St. Louis, pp 177–182

    Google Scholar 

  74. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473. https://doi.org/10.1080/03081070701303470

    Article  MathSciNet  MATH  Google Scholar 

  75. Kannan B, Kramer S (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  76. Deb K (1996) A combined genetic adaptive search ( GeneAS ) for engineering design. Comput Sci Inf 26:30–45

    Google Scholar 

  77. Sandgren E (2013) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112:223–229. https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  78. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  79. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  80. Carvalho EP, Borges C, Andrade D et al (2014) Modeling and optimization of an ammonia reactor using a penalty-like method. Appl Math Comput 237:330–339. https://doi.org/10.1016/j.amc.2014.03.099

    Article  MathSciNet  MATH  Google Scholar 

  81. Babu BV, Angira R (2005) Optimal design of an auto-thermal ammonia synthesis reactor. Comput Chem Eng 29:1041–1045. https://doi.org/10.1016/j.compchemeng.2004.11.010

    Article  Google Scholar 

  82. Upreti SR, Deb K (1997) Optimal design of an ammonia synthesis reactor using genetic algorithms. Comput Chem Eng 21:87–92. https://doi.org/10.1016/0098-1354(95)00251-0

    Article  Google Scholar 

  83. Edgar TF, Himmelblau DM, Lasdon L (2001) Optimization of chemical processes. McGraw-Hill, New York

    Google Scholar 

  84. Murase A, Roberts H, Converse A (1970) Optimal thermal design of an autothermal ammonia synthesis reactor. Ind Eng Chem Process Des Dev 9:503–513. https://doi.org/10.1021/i260036a003

    Article  Google Scholar 

  85. Anh-Nga NT, Tuan-Anh N, Tien-Dung V, Kim-Trung N (2017) Multivariable optimization of an auto-thermal ammonia synthesis reactor using genetic algorithm. In: AIP Conference Proceedings. Ho Chi Minh, Vietnam, 1878:020024/1-8. https://doi.org/10.1063/1.5000192

  86. Nguyen TA-N, Nguyen T-A, Vu T-D, et al (2017) Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method. In: Proceedings of IOP Conference Series: Materials Science and Engineering. Miri, Malaysia, 206:012059/1-7. https://doi.org/10.1088/1757-899X/206/1/012059

  87. Babu B V, Angira R, Nilekar A (2004) Optimal Design of an Auto-thermal Ammonia Synthesis Reactor using Differential Evolution. In: Proceedings of the eighth world multi-conference on systemics, cybernetics and informatics (SCI-2004). Orlando, USA, pp 1–6

  88. Zabiri H, Yusup S, Yusoff N, Yew YC (2006) Optimization of ammonia reactor using shooting methods. In: Proceedings of the 5th WSEAS international conference on data networks, communications and computers. Stevens Point, USA, pp 258–268

  89. Ksasy MSM, Areed F, Saraya S, Khalik MA (2010) Optimal reactor length of an auto-thermal ammonia synthesis reactor. Int J Electr Comput Sci 10:6–15. http://ijens.org/IJECS%20Vol%2010%20Issue%2003.html

  90. Angira R (2011) Simulation and optimization of an auto-thermal ammonia synthesis reactor. Int J Chem React Eng 9(A7):1–12. https://doi.org/10.1515/1542-6580.1883

    Article  Google Scholar 

  91. Borges AR, Lobato SF, Steffen V (2012) Modeling and optimization of an auto-thermal ammonia synthesis reactor using the gravitational search algorithm. In: Proceedings of the EngOpt 3rd international conference on engineering optimization. Rio de Janeiro, Brazil

  92. Yancy-Caballero D, Biegler LT, Guirardello R (2015) Optimization of an ammonia synthesis reactor using simultaneous approach. Chem Eng Trans 43:1297–1302. https://doi.org/10.3303/CET1543217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birmohan Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the following table, f. no. represents the function number, function name defines the name of the function, dim represents the number of dimensions (design variables) of the function, range defines the lower and upper bound of search space for the function, global value defines the global optimum value of the function.

F. no.

Function name

Dim

Range

Global value

Unimodal functions with fixed dimension

 F1

Beale

2

[− 4.5, 4.5]

0

 F2

Booth

2

[− 10, 10]

0

 F3

Brent

2

[− 10, 10]

0

 F4

Matyas

2

[− 10, 10]

0

 F5

Schaffer N. 4

2

[− 100, 100]

0.292579

 F6

Wayburn Seader 3

2

[− 500, 500]

19.10588

 F7

Leon

2

[− 1.2, 1.2]

0

 F8

Cube

2

[− 10, 10]

0

 F9

Zettl

2

[− 5, 10]

− 0.00379

Unimodal functions with variable dimensions

 F10

Sphere

30

[− 100, 100]

0

 F11

Power Sum

30

[− 1, 1]

0

 F12

Schwefel’s 2.20

30

[− 100, 100]

0

 F13

Schwefel’s 2.21

30

[− 100, 100]

0

 F14

Step

30

[− 100, 100]

0

 F15

Stepint

30

[− 5.12, 5.12]

− 155

 F16

Schwefel’s 2.22

30

[− 100, 100]

0

 F17

Schwefel’s 2.23

30

[− 10, 10]

0

 F18

Rosenbrock

30

[− 30, 30]

0

 F19

Brown

30

[− 1, 4]

0

 F20

Dixon and Price

30

[− 10, 10]

0

 F21

Powell singular

30

[− 4, 5]

0

 F22

Xin− She Yang

30

[− 20, 20]

− 1

 F23

Perm 0, D, beta

5

[− Dim, Dim]

0

 F24

Sum squares

30

[− 10, 10]

0

Multimodal functions with fixed− dimension

 F25

Egg Crate

2

[− 5, 5]

0

 F26

Ackley N.3

2

[− 32, 32]

− 195.629

 F27

Adjiman

2

[− 1, 2]

− 2.02181

 F28

Bird

2

[− 2 \(\pi\), 2 \(\pi\)]

− 106.765

 F29

Camel 6 Hump

2

[− 5, 5]

− 1.0316

 F30

Branin RCOS

2

[− 5, 5]

0.397887

 F31

Goldstien Price

2

[− 2, 2]

3

 F32

Hartman 3

3

[0, 1]

− 3.86278

 F33

Hartman 6

6

[0, 1]

− 3.32236

 F34

Cross-in-tray

2

[− 10, 10]

− 2.06261

 F35

Bartels Conn

2

[− 500, 500]

1

 F36

Bukin 6

2

[(− 15, − 5),

(− 5, − 3)]

180.3276

 F37

Carrom table

2

[− 10, 10]

− 24.1568

 F38

Chichinadze

2

[− 30, 30]

− 43.3159

 F39

Cross function

2

[− 10, 10]

0

 F40

Cross leg table

2

[− 10, 10]

− 1

 F41

Crowned cross

2

[− 10, 10]

0.0001

 F42

Easom

2

[− 100, 100]

− 1

 F43

Giunta

2

[− 1, 1]

0.060447

 F44

Helical valley

3

[− 10, 10]

0

 F45

Himmelblau

2

[− 5, 5]

0

 F46

Holder

2

[− 10, 10]

− 19.2085

 F47

Pen holder

2

[− 11, 11]

− 0.96354

 F48

Test tube holder

2

[− 10, 10]

− 10.8723

 F49

Shubert

2

[− 10, 10]

− 186.731

 F50

Shekel

4

[0, 10]

− 10.5364

 F51

Three-Hump Camel

2

[− 5, 5]

0

Multimodal function with variable dimension

 F52

Schwefel’s 2.26

30

[− 500, 500]

− 418.983

 F53

Rastrigin

30

[− 5.12, 5.12]

0

 F54

Periodic

30

[− 10, 10]

0.9

 F55

Qing

30

[− 500, 500]

0

 F56

Alpine N. 1

30

[− 10, 10]

0

 F57

Xin-She Yang

30

[− 5, 5]

0

 F58

Ackley

30

[− 32, 32]

0

 F59

Trignometric 2

30

[− 500, 500]

0

 F60

Salomon

30

[− 100, 100]

0

 F61

Styblinski-Tang

30

[− 5, 5]

− 1174.98

 F62

Griewank

30

[− 100, 100]

0

 F63

Xin-She Yang N. 4

30

[− 10, 10]

− 1

 F64

Xin-She Yang N. 2

30

[− 2 \(\pi\), 2 \(\pi\)]

0

 F65

Gen. penalized

30

[− 50, 50]

0

 F66

Penalized

30

[− 50, 50]

0

 F67

Michalewics

30

[0, \(\pi\)]

− 29.6309

 F68

Quartic noise

30

[− 1.28, 1.28]

0

CEC-BC-2017 Functions

 F69

Shifted and rotated bent cigar function

10

[− 100, 100]

100

 F70

Shifted and rotated rosenbrock function

10

[− 100, 100]

300

 F71

Shifted and rotated rastrigin function

10

[− 100, 100]

400

 F72

Shifted and rotated expanded Scaffer’s F6 function

10

[− 100, 100]

500

 F73

Shifted and rotated lunacek bi Rastrigin function

10

[− 100, 100]

600

 F74

Shifted and rotated non-continuous Rastrigin’s function

10

[− 100, 100]

700

 F75

Shifted and rotated Levy function

10

[− 100, 100]

800

 F76

Shifted and rotated Schwefel’s function

10

[− 100, 100]

900

 F77

Hybrid Function 1 (N = 3)

10

[− 100, 100]

1000

 F78

Hybrid Function 2 (N = 3)

10

[− 100, 100]

1100

 F79

Hybrid Function 3 (N = 3)

10

[− 100, 100]

1200

 F80

Hybrid Function 4 (N = 4)

10

[− 100, 100]

1300

 F81

Hybrid Function 5 (N = 4)

10

[− 100, 100]

1400

 F82

Hybrid Function 6 (N = 4)

10

[− 100, 100]

1500

 F83

Hybrid Function 6 (N = 5)

10

[− 100, 100]

1600

 F84

Hybrid Function 6 (N = 5)

10

[− 100, 100]

1700

 F85

Hybrid Function 6 (N = 5)

10

[− 100, 100]

1800

 F86

Hybrid Function 6 (N = 6)

10

[− 100, 100]

1900

 F87

Composite Function 1 (N = 3)

10

[− 100, 100]

2000

 F88

Composite Function 2 (N = 3)

10

[− 100, 100]

2100

 F89

Composite Function 3 (N = 4)

10

[− 100, 100]

2200

 F90

Composite Function 4 (N = 4)

10

[− 100, 100]

2300

 F91

Composite Function 5 (N = 5)

10

[− 100, 100]

2400

 F92

Composite Function 6 (N = 5)

10

[− 100, 100]

2500

 F93

Composite Function 7 (N = 6)

10

[− 100, 100]

2600

 F94

Composite Function 8 (N = 6)

10

[− 100, 100]

2700

 F95

Composite Function 9 (N = 6)

10

[− 100, 100]

2800

 F96

Composite Function 10 (N = 3)

10

[− 100, 100]

2900

 F97

Composite Function 11 (N = 3)

10

[− 100, 100]

3000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Singh, B. & Kaur, M. An improved elephant herding optimization for global optimization problems. Engineering with Computers 38 (Suppl 4), 3489–3521 (2022). https://doi.org/10.1007/s00366-021-01471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01471-y

Keywords

Navigation