Skip to main content
Log in

A fast numerical algorithm based on Chebyshev-wavelet technique for solving Thomas-Fermi type equation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A numerical method based on Chebyshev polynomials and wavelet theory to solve the generalized Thomas-Fermi boundary value problems is proposed numerically. First, we convert the generalized Thomas-Fermi boundary value problem into the equivalent integral equation. The collocation technique based on Chebyshev wavelets is applied to obtain a nonlinear system that is then dealt with the Newton-Raphson method. We also discuss the convergence and the error bound of the current process. The exactness of the present method is tested by computing the \(L_{\infty }\) and the \(L_2\)-norm errors of several numerical problems. The obtained results are compared with the precise solution and the results obtained by the other known techniques. The advantage of the Chebyshev wavelet collocation method is that it yields better accuracy for a smaller number of collocation points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas LH (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542

    Article  MATH  Google Scholar 

  2. Fermi E (1927) Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rendiconti Accademia Nazionale Lincei 32(6):602–607

    Google Scholar 

  3. Chan C, Hon Y (1987) A constructive solution for a generalized Thomas-Fermi theory of ionized atoms. Q Appl Math 45(3):591–599

    Article  MathSciNet  MATH  Google Scholar 

  4. Banerjee B, Constantinescu D, Rehak P (1974) Thomas-Fermi and Thomas-Fermi-Dirac calculations for atoms in a very strong magnetic field. Phys Rev D 10(8):2384

    Article  Google Scholar 

  5. Coulson CA, March NH (1950) Momenta in atoms using the Thomas-Fermi method. Proc Phys Soc Sect A 63(4):367

    Article  MATH  Google Scholar 

  6. March N (1952) Thomas-Fermi fields for molecules with tetrahedral and octahedral symmetry. Math Proc Camb Philos Soc 48(4):665–682

    Article  MATH  Google Scholar 

  7. March N, Tomishima Y (1979) Behavior of positive ions in extremely strong magnetic fields. Phys Rev D 19(2):449

    Article  Google Scholar 

  8. Umeda K, Tomishima Y (1955) On the influence of the packing on the atomic scattering factor based on the Thomas-Fermi theory. J Phys Soc Jpn 10(9):753–758

    Article  Google Scholar 

  9. Adomian G (1998) Solution of the Thomas-Fermi equation. Appl Math Lett 11(3):131–133

    Article  MathSciNet  MATH  Google Scholar 

  10. Zaitsev N, Matyushkin I, Shamonov D (2004) Numerical solution of the Thomas-Fermi equation for the centrally symmetric atom. Russ Microelectron 33(5):303–309

    Article  Google Scholar 

  11. Desaix M, Anderson D, Lisak M (2004) Variational approach to the Thomas-Fermi equation. Eur J Phys 25(6):699

    Article  Google Scholar 

  12. Marinca V, Herişanu N (2011) An optimal iteration method with application to the Thomas-Fermi equation. Open Phys 9(3):891–895

    Article  Google Scholar 

  13. Tisdell CC, Holzer M (2015) Analysis of the boundary value problem associated with the nonrelativistic Thomas-Fermi equation for heavy atoms in intense magnetic fields. Differ Equ Appl 7:27–41

    MathSciNet  MATH  Google Scholar 

  14. Raja MAZ, Zameer A, Khan AU, Wazwaz AM (2016) A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming. Springer Plus 5(1):1400

    Article  Google Scholar 

  15. Parand K, Yousefi H, Delkhosh M, Ghaderi A (2016) A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation. Eur Phys J Plus 131(7):228

    Article  Google Scholar 

  16. Parand K, Mazaheri P, Yousefi H, Delkhosh M (2017) Fractional order of rational jacobi functions for solving the non-linear singular Thomas-Fermi equation. Eur Phys J Plus 132(2):77

    Article  Google Scholar 

  17. Rosu HC, Mancas SC (2017) Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations. Phys A Stat Mech Appl 471:212–218

    Article  MathSciNet  MATH  Google Scholar 

  18. Bobisud L (1990) Existence of solutions for nonlinear singular boundary value problems. Appl Anal 35(1–4):43–57

    Article  MathSciNet  MATH  Google Scholar 

  19. Pandey RK, Verma AK (2008) Existence-uniqueness results for a class of singular boundary value problems arising in physiology. Nonlinear Anal Real World Appl 9(1):40–52

    Article  MathSciNet  MATH  Google Scholar 

  20. Pandey RK, Verma AK (2008) Existence-uniqueness results for a class of singular boundary value problems-II. J Math Anal Appl 338:1387–1396

    Article  MathSciNet  MATH  Google Scholar 

  21. Chandrasekhar S (1939) An introduction to the study of stellar structure. Ciel et Terre 55:412

    MATH  Google Scholar 

  22. McElwain D (1978) A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics. J Theor Biol 71(2):255–263

    Article  Google Scholar 

  23. Gray B (1980) The distribution of heat sources in the human head: theoretical considerations. J Theor Biol 82(3):473–476

    Article  Google Scholar 

  24. Chawla M, Katti C (1982) Finite difference methods and their convergence for a class of singular two point boundary value problems. Numerische Mathematik 39(3):341–350

    Article  MathSciNet  MATH  Google Scholar 

  25. Pandey R (1992) On the convergence of a finite difference method for a class of singular two point boundary value problems. Int J Comput Math 42:237–241

    Article  MATH  Google Scholar 

  26. Kumar M (2002) A three-point finite difference method for a class of singular two-point boundary value problems. J Comput Appl Math 145(1):89–97

    Article  MathSciNet  MATH  Google Scholar 

  27. Iyengar S, Jain P (1986) Spline finite difference methods for singular two point boundary value problems. Numerische Mathematik 50(3):363–376

    Article  MathSciNet  MATH  Google Scholar 

  28. Rashidinia J, Mahmoodi Z, Ghasemi M (2007) Parametric spline method for a class of singular two-point boundary value problems. Appl Math Comput 188(1):58–63

    MathSciNet  MATH  Google Scholar 

  29. Kanth AR (2007) Cubic spline polynomial for non-linear singular two-point boundary value problems. Appl Math Comput 189(2):2017–2022

    MathSciNet  MATH  Google Scholar 

  30. Dehghan M, Shakeri F (2008) Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron 13(01):53–59

    Article  Google Scholar 

  31. Parand K, Dehghan M, Rezaei AR, Ghaderi SM (2010) An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method. Comput Phys Commun 181(06):1096–1108

    Article  MathSciNet  MATH  Google Scholar 

  32. Singh R, Kumar J, Nelakanti G (2012) New approach for solving a class of doubly singular two-point boundary value problems using Adomian decomposition method. Adv Numer Anal 2012:1–22. https://doi.org/10.1155/2012/541083

    Article  MathSciNet  MATH  Google Scholar 

  33. Parand K, Dehghan M, Pirkhedri A (2013) The Sinc-collocation method for solving the Thomas-Fermi equation. J Comput Appl Math 237(01):244–252

    Article  MathSciNet  MATH  Google Scholar 

  34. Taghavi A, Pearce S (2013) A solution to the Lane-Emden equation in the theory of stellar structure utilizing the Tau method. Math Methods Appl Sci 36(10):1240–1247

    Article  MathSciNet  MATH  Google Scholar 

  35. Lakestani M, Dehghan M (2013) Four techniques based on the B-spline expansion and the collocation approach for the numerical solution of the Lane-Emden equation. Math Methods Appl Sci 36(16):2243–2253

    Article  MathSciNet  MATH  Google Scholar 

  36. Singh R, Kumar J, Nelakanti G (2013) Numerical solution of singular boundary value problems using Green function and improved decomposition method. J Appl Math Comput 43(1–2):409–425

    Article  MathSciNet  MATH  Google Scholar 

  37. Mohammadzadeh R, Lakestani M, Dehghan M (2014) Collocation method for the numerical solutions of Lane-Emden type equations using cubic Hermite spline functions. Math Methods Appl Sci 37(9):1303–1717

    Article  MathSciNet  MATH  Google Scholar 

  38. Singh R, Kumar J (2014) An efficient numerical technique for the solution of nonlinear singular boundary value problems. Comput Phys Commun 185(4):1282–1289

    Article  MathSciNet  MATH  Google Scholar 

  39. Singh R, Kumar J, Nelakanti G (2014) Approximate series solution of singular boundary value problems with derivative dependence using Green’s function technique. Comput Appl Math 33(2):451–467

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh R, Kumar J (2014) The Adomian decomposition method with Green’s function for solving nonlinear singular boundary value problems. J Appl Math Comput 44(1–2):397–416

    Article  MathSciNet  MATH  Google Scholar 

  41. Singh R, Wazwaz AM, Kumar J (2016) An efficient semi-numerical technique for solving nonlinear singular boundary value problems arising in various physical models. Int J Comput Math 93(8):1330–1346

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou F, Xu X (2016) Numerical solutions for the linear and nonlinear singular boundary value problems using Laguerre wavelets. Adv Differ Equations 2016(1):17

    Article  MathSciNet  MATH  Google Scholar 

  43. Turkyilmazoglu M (2017) Solution of initial and boundary value problems by an effective accurate method. Int J Comput Methods 14(06):1750069

    Article  MathSciNet  MATH  Google Scholar 

  44. Singh R, Das N, Kumar J (2017) The optimal modified variational iteration method for the Lane-Emden equations with Neumann and Robin boundary conditions. Eur Phys J Plus 132(6):251

    Article  Google Scholar 

  45. Singh R (2018) Optimal homotopy analysis method for the non-isothermal reaction-diffusion model equations in a spherical catalyst. J Math Chem 56(9):2579–2590

    Article  MathSciNet  MATH  Google Scholar 

  46. Singh R (2018) Analytical approach for computation of exact and analytic approximate solutions to the system of Lane-Emden-Fowler type equations arising in astrophysics. Eur Phys J Plus 133(8):320

    Article  Google Scholar 

  47. Verma AK, Kayenat S (2018) On the convergence of Mickens’ type nonstandard finite difference schemes on Lane-Emden type equations. J Math Chem 56(6):1667–1706

    Article  MathSciNet  MATH  Google Scholar 

  48. Singh R (2019) Analytic solution of singular Emden-Fowler-type equations by Green’s function and homotopy analysis method. Eur Phys J Plus 134(11):583

    Article  Google Scholar 

  49. Singh R, Wazwaz AM (2019) An efficient algorithm for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions: the homotopy analysis method. MATCH Commun Math Comput Chem 81(3):785–800

    MATH  Google Scholar 

  50. Singh R (2019) A modified homotopy perturbation method for nonlinear singular Lane-Emden equations arising in various physical models. Int J Appl Comput Math 5(3):64

    Article  MathSciNet  MATH  Google Scholar 

  51. Singh R, Garg H, Guleria V (2019) Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann-Robin boundary conditions. J Comput Appl Math 346:150–161

    Article  MathSciNet  MATH  Google Scholar 

  52. Singh R, Shahni J, Garg H, Garg A (2019) Haar wavelet collocation approach for Lane-Emden equations arising in mathematical physics and astrophysics. Eur Phys J Plus 134(11):548

    Article  Google Scholar 

  53. Raja MAZ, Mehmood J, Sabir Z, Nasab AK, Manzar MA (2019) Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput Appl 31(3):793–812

    Article  Google Scholar 

  54. Verma AK, Tiwari D (2019) Higher resolution methods based on quasilinearization and Haar wavelets on Lane-Emden equations. Int J WaveletsMultiresolution Inf Process 17(03):1950005

    Article  MathSciNet  MATH  Google Scholar 

  55. Singh R, Guleria V, Singh M (2020) Haar wavelet quasilinearization method for numerical solution of Emden-Fowler type equations. Math Comput Simul 174:123–133

    Article  MathSciNet  MATH  Google Scholar 

  56. Chapwanya M, Dozva R, Muchatibaya G (2019) A nonstandard finite difference technique for singular Lane-Emden type equations. Eng Comput 36(5):1566–1578

    Article  Google Scholar 

  57. Kumar M (2020) Numerical solution of singular boundary value problems using advanced Adomian decomposition method. Eng Comput. https://doi.org/10.1007/s00366-020-00972-6

    Article  Google Scholar 

  58. Shahni J, Singh R (2020) An efficient numerical technique for Lane-Emden-Fowler boundary value problems: Bernstein collocation method. Eur Phys J Plus 135(06):1–21

    Article  Google Scholar 

  59. Shahni J, Singh R (2020) Numerical results of Emden-Fowler boundary value problems with derivative dependence using the Bernstein collocation method. Eng Comput. https://doi.org/10.1007/s00366-020-01155-z

    Article  Google Scholar 

  60. Saadatmandi A, Dehghan M (2008) The numerical solution of problems in calculus of variation using Chebyshev finite difference method. Phys Lett A 372(22):4037–4040

    Article  MATH  Google Scholar 

  61. Adibi H, Assari P (2010) Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind. Math Probl Eng. https://doi.org/10.1155/2010/138408

    Article  MathSciNet  MATH  Google Scholar 

  62. Biazar J, Ebrahimi H (2012) Chebyshev wavelets approach for nonlinear systems of Volterra integral equations. Comput Math Appl 63(3):608–616

    Article  MathSciNet  MATH  Google Scholar 

  63. Yang C, Hou J (2013) Chebyshev wavelets method for solving Bratu’s problem. Boundary Value Problems 2013(1):142

    Article  MathSciNet  MATH  Google Scholar 

  64. Celik I (2013) Numerical solution of differential equations by using Chebyshev wavelet collocation method. Çankaya Üniversitesi Bilim ve Mühendislik Dergisi 10(2):169–184

    Google Scholar 

  65. Sahu PK, Saha RS (2017) Chebyshev wavelet method for numerical solutions of integro-differential form of Lane-Emden type differential equations. Int J Wavelets Multiresolution Inf Process 15(02):1750015

    Article  MathSciNet  MATH  Google Scholar 

  66. Secer A, Bakir Y (2019) Chebyshev wavelet collocation method for Ginzburg-Landau equation. Therm Sci 23(1):57–65

    Article  Google Scholar 

  67. Awashie GE, Amoako-Yirenkyi P, Dontwi IK (2019) Chebyshev wavelets collocation method for simulating a two-phase flow of immiscible fluids in a reservoir with different capillary effects. J Petrol Explor Prod Technol 9(3):2039–2051

    Article  Google Scholar 

  68. Assari P, Dehghan M (2019) Application of dual-Chebyshev wavelets for the numerical solution of boundary integral equations with logarithmic singular kernels. Eng Comput 35(1):175–190

    Article  Google Scholar 

  69. Assari P, Dehghan M (2020) The numerical solution of nonlinear weakly singular Fredholm integral equations based on the dual-Chebyshev wavelets. Appl Comput Math 19(1):3–19

    MathSciNet  MATH  Google Scholar 

  70. Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, p 61 (ISBN: 978-0-89871-274-2ISBN: 978-0-89871-274-2)

    Book  MATH  Google Scholar 

  71. Alpert BK (1993) A class of bases in \(L^{2}\) for the sparse representation of integral operators. SIAM J Math Anal 24(1):246–262

    Article  MathSciNet  MATH  Google Scholar 

  72. Guf JS, Jiang WS (1996) The Haar wavelets operational matrix of integration. Int J Syst Sci 27(7):623–628

    Article  MATH  Google Scholar 

  73. Dennis JE Jr, Schnabel RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, p 378

    MATH  Google Scholar 

  74. Dahlquist G, Björck A (2008) Numerical methods in scientific computing, vol 1. SIAM, Philadelphia

    MATH  Google Scholar 

  75. Singh R, Kumar J (2013) Solving a class of singular two-point boundary value problems using new modified decomposition method. ISRN Comput Math 2013:1–11

    Article  MATH  Google Scholar 

  76. Duggan R, Goodman A (1986) Pointwise bounds for a nonlinear heat conduction model of the human head. Bull Math Biol 48(2):229–236

    Article  MATH  Google Scholar 

  77. Lin S (1976) Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J Theor Biol 60(2):449–457

    Article  Google Scholar 

Download references

Acknowledgements

First author of this paper is thankful to the INSPIRE Fellowship under INSPIRE Program of Department of Science and Technology, New Delhi, India for the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randhir Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahni, J., Singh, R. A fast numerical algorithm based on Chebyshev-wavelet technique for solving Thomas-Fermi type equation. Engineering with Computers 38 (Suppl 4), 3409–3422 (2022). https://doi.org/10.1007/s00366-021-01476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01476-7

Keywords

Mathematics Subject Classification

Navigation