Skip to main content
Log in

Hygrothermal vibration of a cross-ply composite plate with magnetostrictive layers, viscoelastic faces, and a homogeneous core

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, a quasi-3D trigonometric shear deformation plate theory is utilized to study the vibration response of an advanced cross-ply multilayered composite plate that contains a homogenous core and viscoelastic faces subjected to a hygrothermal loading and embedded in a viscoelastic foundation. Two actuating layers of magnetostrictive material are employed for controlling and enhancing the vibration damping via a constant velocity feedback gain distributed control. The layers of the viscoelastic material are modelled using the Kelvin–Voigt model. The dynamic system is obtained employing Hamilton’s principle and solved analytically based on Navier’s approach. The influences of important factors on eigenfrequency values and deflection of the proposed multilayered plate are investigated. Of these, the effect of the feedback control gain magnitude, aspect ratio, magnetostrictive layer location, thickness ratio, viscoelastic layer thickness-to-core thickness ratio, half-wave numbers, magnetostrictive layer thickness-to-core thickness ratio, orientations of the viscoelastic layer’s fiber, and viscoelastic foundation and material. Numerical results proved that the stiffness of viscoelastic foundations, location of the smart layers, feedback control gain value, and magnetostrictive thickness-to-core thickness ratio have strong roles in the improvement of vibration damping characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Goodfriend MJ, Shoop KM (1992) Adaptive characteristics of the magnetostrictive alloy, Terfenol-D, for active vibration control. J Intell Mater Sys Struct 3:245–254

    Article  Google Scholar 

  2. Anjanappa M, Bi J (1993) Modelling, design and control of embedded Terfenol-D actuator. Smart Struct Intel Sys 1917:908–918

    Google Scholar 

  3. Anjanappa M, Bi J (1994) A theoretical and experimental study of magnetostrictive mini actuators. Smart Mater Struct 1:83–91

    Article  Google Scholar 

  4. Giurgiutiu V, Jichi F, Berman JB, Kamphaus JM (2001) Theoretical and experimental investigation of magnetostrictive composite beams. Smart Mater Struct 10(5):934–945

    Article  Google Scholar 

  5. Reddy JN (1997) Mechanics of laminated composite plates: theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  6. Hiller MW, Bryant MD, Umegaki J (1989) Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J Sound Vib 134:507–519

    Article  Google Scholar 

  7. Reddy JN, Barbosa JI (2000) On vibration suppression of magnetostrictive beams. Smart Mater Struct 9:49–58

    Article  Google Scholar 

  8. Pradhan SC, Ng TY, Lam KY, Reddy JN (2001) Control of laminated composite plates using magnetostrictive layers. Smart Mater Struct 10:657–667

    Article  Google Scholar 

  9. Pradhan SC (2005) Vibration suppression of FGM shells using embedded magnetostrictive layers. Int J Solids Struct 42:2465–2488

    Article  MATH  Google Scholar 

  10. Zhang Y, Zhou H, Zhou Y (2015) Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech Solida Sin 28:50–60

    Article  Google Scholar 

  11. Subramanian P (2002) Vibration suppression of symmetric laminated composite beams. Smart Mater Struct 11(6):880–885

    Article  Google Scholar 

  12. Bhattacharya B, Vidyashankar BR, Patsias S, Tomlinson GR (2000) Active and passive vibration control of flexible structures using a combination of magnetostrictive and ferro-magnetic alloys. Proc SPIE Smart Struct Mater 4073:204–214

    Google Scholar 

  13. Kumar JS, Ganesan N, Swarnamani S, Padmanabhan C (2003) Active control of beam with magnetostrictive layer. Comput Struct 81(13):1375–1382

    Article  Google Scholar 

  14. Ghosh DP, Gopalakrishnan S (2005) Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Mater Struct 14(6):1462–1473

    Article  Google Scholar 

  15. Zhou HM, Zhou YH (2007) Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Mater Struct 16(1):198–206

    Article  Google Scholar 

  16. Murty AVK, Anjanappa M, Wu Y-F (1997) The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. J Sound Vib 206(2):133–149

    Article  Google Scholar 

  17. Kumar JS, Ganesan N, Swarnamani S, Padmanabhan C (2004) Active control of simply supported plates with a magnetostrictive layer. Smart Mater Struct 13(3):487–492

    Article  Google Scholar 

  18. Suman SD, Hirwani CK, Chaturvedi A, Panda SK (2017) Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conf Ser Mater Sci Eng 178:012026

    Article  Google Scholar 

  19. Reddy JN (1999) On laminated composite plates with integrated sensors and actuators. Eng Struct 21(7):568–593

    Article  Google Scholar 

  20. Koconis DB, Kollar LP, Springer GS (1994) Shape control of composite plates and shells with embedded actuators I: voltage specified. J Compos Mater 28:415–458

    Article  Google Scholar 

  21. Lee SJ, Reddy JN, Rostamabadi F (2004) Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elem Anal Des 40:463–483

    Article  Google Scholar 

  22. Zenkour AM, El-Shahrany HD (2019) Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. J Comput Appl Mech 50(1):69–75

    Google Scholar 

  23. Zenkour AM, El-Shahrany HD (2020) Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J Mater Res Technol 9(3):4727–4748

    Article  Google Scholar 

  24. Zenkour AM, El-Shahrany HD (2020) Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation. Appl Math Mech 41:1269–1286

    Article  MathSciNet  MATH  Google Scholar 

  25. Zenkour AM, El-Shahrany HD (2021) Hygrothermal vibration of adaptive composite magnetostrictive laminates supported by elastic substrate medium. Eur J Mech A Solids 85:104140

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee SJ, Reddy JN (2005) Non-linear response of laminated composite plates under thermomechanical loading. Int J Nonlinear Mech 40(7):971–985

    Article  MATH  Google Scholar 

  27. Santapuri S, Scheidler JJ, Dapino MJ (2015) Two-dimensional dynamic model for composite laminates with embedded magnetostrictive materials. Compos Struct 132:737–745

    Article  Google Scholar 

  28. Anjanappa M, Bi J (1994) Magnetostrictive mini actuators for smart structural application. Smart Mater Struct 3:383–390

    Article  Google Scholar 

  29. Shankar G, Kumar SK, Mahato PK (2017) Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin Walled Struct 116:53–68

    Article  Google Scholar 

  30. Dutta G, Panda SK, Mahapatra TR, Singh VK (2017) Electro-magneto-elastic response of laminated composite plate: a finite element approach. Int J Appl Comput Math 3(3):2573–2592

    Article  MathSciNet  MATH  Google Scholar 

  31. Singh VK, Mahapatra TR, Panda SK (2016) Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator. Compos Struct 157:121–130

    Article  Google Scholar 

  32. Singh VK, Hirwani CK, Panda SK, Mahapatra TR, Mehar K (2019) Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration. Proc Inst Mech Eng Part C J Mech Eng Sci 233(5):1601–1619

    Article  Google Scholar 

  33. Zenkour AM, Allam MNM, Sobhy M (2011) Bending of a fiber-reinforced viscoelastic composite plate resting on elastic foundations. Arch Appl Mech 81(1):77–96

    Article  MATH  Google Scholar 

  34. Zenkour AM, Allam MNM, Sobhy M (2010) Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech 212(3):233–252

    Article  MATH  Google Scholar 

  35. Sofiyev AH (2018) On the solution of the dynamic stability of heterogeneous orthotropic viscoelastic cylindrical shells. Compos Struct 206:124–130

    Article  Google Scholar 

  36. Alimirzaei S, Sadighi M, Nikbakht A (2019) Wave propagation analysis in viscoelastic thick composite plates resting on visco-Pasternak foundation by means of quasi-3D sinusoidal shear deformation theory. Eur J Mech A Solids 74:1–15

    Article  MathSciNet  MATH  Google Scholar 

  37. Allam MNM, Zenkour AM (2003) Bending response of a fiber-reinforced viscoelastic arched bridge model. Appl Math Model 27:233–248

    Article  MATH  Google Scholar 

  38. Zenkour AM (2004) Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech 171(3–4):171–187

    Article  MATH  Google Scholar 

  39. Sofiyev AH (2019) About an approach to the determination of the critical time of viscoelastic functionally graded cylindrical shells. Compos B Eng 156:156–165

    Article  Google Scholar 

  40. Kolahchi R, Zarei MS, Hajmohammad MH, Nouri A (2017) Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int J Mech Sci 130:534–545

    Article  Google Scholar 

  41. Zenkour AM, Sobhy M (2018) Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin–Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech 229(1):3–19

    Article  MathSciNet  MATH  Google Scholar 

  42. Zenkour AM, El-Shahrany HD (2020) Hygrothermal effect on vibration of magnetostrictive viscoelastic sandwich plates supported by Pasternak’s foundations. Thin Walled Struct 157:107007

    Article  Google Scholar 

  43. Zenkour AM, El-Shahrany HD (2021) Quasi-3D theory for the vibration of a magnetostrictive laminated plate on elastic medium with viscoelastic core and faces. Compos Struct 257:113091

    Article  Google Scholar 

  44. Sofiyev AH (2019) Review of research on the vibration and buckling of the FGM conical shells. Compos Struct 211:301–317

    Article  Google Scholar 

  45. Sofiyev AH, Zerin Z, Kuruoglu N (2020) Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mech 231:1–17

    Article  MathSciNet  MATH  Google Scholar 

  46. Hirwani CK, Mishra PK, Panda SK (2021) Nonlinear steady-state responses of weakly bonded composite shell structure under hygro-thermo-mechanical loading. Compos Struct 265:113768

    Article  Google Scholar 

  47. Hirwani CK, Panda SK, Mishra PK (2021) Influence of debonding on nonlinear deflection responses of curved composite panel structure under hygro-thermo-mechanical loading-macro-mechanic. Int J Nonlinear Mech 128:103636

    Article  Google Scholar 

  48. Mehar K, Panda SK, Sharma N (2020) Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sand. Eng Struct 211:110444

    Article  Google Scholar 

  49. Mehar K, Mishra PK, Panda SK (2021) Thermal post-buckling strength prediction and improvement of shape memory alloy bonded carbon nanotube-reinforced shallow shell panel: a nonlinear finite element micromechanical approach. J Pressure Vessel Tech 143(6):061301

    Article  Google Scholar 

  50. Haciyev VC, Sofiyev AH, Kuruoglu N (2019) On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation. Mech Adv Mater Struct 26(10):886–897

    Article  Google Scholar 

  51. Zenkour AM, El-Shahrany HD (2021) Controlled motion of viscoelastic fiber-reinforced magnetostrictive sandwich plates resting on visco-Pasternak foundation. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1861395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Zenkour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The coefficients \(\overline{Q}_{ij}^{\left( r \right)}\), \(\overline{q}_{ij}\), \(\tilde{\alpha }_{l}\) and \(\tilde{\beta }_{l}\), \(l = xx,yy,zz,\) appeared in Eqs. (11)–(14) are expanded as

$$\overline{Q}_{11}^{\left( r \right)} = Q_{11}^{\left( r \right)} \cos^{4} \theta^{\left( r \right)} + 2\left( {Q_{12}^{\left( r \right)} + 2Q_{66}^{\left( r \right)} } \right)\cos^{2} \theta^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} + Q_{22}^{\left( r \right)} \sin^{4} \theta^{\left( r \right)} ,$$
$$\overline{Q}_{12}^{\left( r \right)} = \left( {Q_{11}^{\left( r \right)} + Q_{22}^{\left( r \right)} - 4Q_{66}^{\left( r \right)} } \right)\cos^{2} \theta^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} + Q_{12}^{\left( r \right)} \left( {\sin^{4} \theta^{\left( r \right)} + \cos^{4} \theta^{\left( r \right)} } \right),$$
$$\overline{Q}_{22}^{\left( r \right)} = Q_{11}^{\left( r \right)} \sin^{4} \theta^{\left( r \right)} + 2\left( {Q_{12}^{\left( r \right)} + 2Q_{66}^{\left( r \right)} } \right)\cos^{2} \theta^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} + Q_{22}^{\left( r \right)} \cos^{4} \theta^{\left( r \right)} ,$$
$$\overline{Q}_{23}^{\left( r \right)} = Q_{23}^{\left( r \right)} \cos^{2} \theta^{\left( r \right)} + Q_{13}^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} ,\quad { }\overline{Q}_{33}^{\left( r \right)} = Q_{33}^{\left( r \right)} ,$$
$$\overline{Q}_{44}^{\left( r \right)} = Q_{44}^{\left( r \right)} \cos^{2} \theta^{\left( r \right)} + Q_{55}^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} ,$$
$$\overline{Q}_{55}^{\left( r \right)} = Q_{55}^{\left( r \right)} \cos^{2} \theta^{\left( r \right)} + Q_{44}^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} ,$$
$$\overline{Q}_{66}^{\left( r \right)} = \left( {Q_{11}^{\left( r \right)} + Q_{22}^{\left( r \right)} - 2Q_{12}^{\left( r \right)} - 2Q_{66}^{\left( r \right)} } \right)\sin^{2} \theta^{\left( r \right)} \cos^{2} \theta^{\left( r \right)} + Q_{66}^{\left( r \right)} \left( {\sin^{4} \theta^{\left( r \right)} + \cos^{4} \theta^{\left( r \right)} } \right),$$
$$Q_{11}^{\left( r \right)} = \frac{{E_{1} \left( {1 - {\upnu }_{23}^{\left( r \right)} {\upnu }_{32}^{\left( r \right)} } \right)}}{\Delta },\quad { }Q_{12}^{\left( r \right)} = \frac{{E_{1} \left( {{\upnu }_{21}^{\left( r \right)} + {\upnu }_{31}^{\left( r \right)} {\upnu }_{23}^{\left( r \right)} } \right)}}{\Delta },\quad { }Q_{13}^{\left( r \right)} = \frac{{E_{1} \left( {{\upnu }_{31}^{\left( r \right)} + {\upnu }_{21}^{\left( r \right)} {\upnu }_{32}^{\left( r \right)} } \right)}}{\Delta },$$
$$Q_{22}^{\left( r \right)} = \frac{{E_{2} \left( {1 - {\upnu }_{13}^{\left( r \right)} {\upnu }_{31}^{\left( r \right)} } \right)}}{\Delta },\quad { }Q_{23}^{\left( r \right)} = \frac{{E_{2} \left( {{\upnu }_{32}^{\left( r \right)} + {\upnu }_{12}^{\left( r \right)} {\upnu }_{31}^{\left( r \right)} } \right)}}{\Delta },\quad { }Q_{33}^{\left( r \right)} = \frac{{E_{3} \left( {1 - {\upnu }_{12}^{\left( r \right)} {\upnu }_{21}^{\left( r \right)} } \right)}}{\Delta }{ },$$
$$Q_{44}^{\left( r \right)} = G_{23}^{\left( r \right)} ,\quad { }Q_{55}^{\left( r \right)} = G_{13}^{\left( r \right)} ,\quad { }Q_{66}^{\left( r \right)} = G_{12}^{\left( r \right)} ,$$
$$\Delta = 1 - \nu_{21}^{\left( r \right)} \nu_{12}^{\left( r \right)} - \nu_{23}^{\left( r \right)} \nu_{32}^{\left( r \right)} - \nu_{13}^{\left( r \right)} \nu_{31}^{\left( r \right)} - 2\nu_{21}^{\left( r \right)} \nu_{13}^{\left( r \right)} \nu_{32}^{\left( r \right)} ,$$
$$\nu_{21}^{\left( r \right)} = \frac{{\nu_{12}^{\left( r \right)} E_{22}^{\left( r \right)} }}{{E_{1}^{\left( r \right)} }},\quad \nu_{31}^{\left( r \right)} = \frac{{\nu_{13}^{\left( r \right)} E_{3}^{\left( r \right)} }}{{E_{1}^{\left( r \right)} }},\quad \nu_{32}^{\left( r \right)} = \frac{{\nu_{23}^{\left( r \right)} E_{3}^{\left( r \right)} }}{{E_{2}^{\left( r \right)} }},$$
$$\tilde{\alpha }_{xx} = \alpha_{xx} \cos^{2} \theta + \alpha_{yy} \sin^{2} \theta ,\quad { }\tilde{\alpha }_{yy} = \alpha_{yy} \cos^{2} \theta + \alpha_{xx} \sin^{2} \theta ,\quad { }\tilde{\alpha }_{zz} = \alpha_{zz} ,$$
$$\tilde{\alpha }_{xy} = \left( {\alpha_{xx} - \alpha_{yy} } \right)\sin \theta \cos \theta ,$$
$$\tilde{\beta }_{xx} = \beta_{xx} \cos^{2} \theta + \beta_{yy} \sin^{2} \theta ,\quad { }\tilde{\beta }_{yy} = \beta_{yy} \cos^{2} \theta + \beta_{xx} \sin^{2} \theta ,\quad { }\tilde{\beta }_{zz} = \beta_{zz} ,$$
$$\tilde{\beta }_{xy} = \left( {\beta_{xx} - \beta_{yy} } \right)\sin \theta \cos \theta ,$$
$$\overline{q}_{31} = q_{31} \cos^{2} \theta + q_{32} \sin^{2} \theta ,\quad { }\overline{q}_{32} = q_{32} \cos^{2} \theta + q_{31} \sin^{2} \theta ,\quad { }\overline{q}_{33} = q_{33} ,$$
$$\overline{q}_{14} = \left( {q_{15} - q_{24} } \right)\sin \theta \cos \theta ,\quad { }\overline{q}_{24} = q_{24} \cos^{2} \theta + q_{15} \sin^{2} \theta ,$$
$$\overline{q}_{15} = q_{15} \cos^{2} \theta + q_{24} \sin^{2} \theta ,\quad { }\overline{q}_{25} = \left( {q_{15} - q_{24} } \right)\sin \theta \cos \theta ,$$
$$\overline{q}_{36} = \left( {q_{31} - q_{32} } \right)\sin \theta \cos \theta ,$$

where \(v_{ij}\)\({ }E_{i}\) and \(G_{ij}\) represent, respectively, Poisson’s ratios, Young’s moduli, and shear moduli. Further, the coefficients \(\alpha_{ij}\), \(\beta_{ij}\) and \(q_{ij}\) are the thermal coefficients, hygroscopic expansion coefficients, and the magnetostrictive modules.

Appendix 2

The constants \(\hat{S}_{ij}\), \(\hat{M}_{ij}\) and \(\hat{C}_{ij}\) (\(i = 1, 2, 3, 4\)) which appear in Eqs. (42) and (44) are expressed as:

$$\begin{aligned} \hat{S}_{11} & = \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {D_{11} \left( {\frac{n\pi }{a}} \right)^{4} + D_{22} \left( {\frac{m\pi }{b}} \right)^{4} + 2\left( {D_{12} + 2D_{66} } \right)\left( {\frac{n\pi }{a}} \right)^{2} \left( {\frac{m\pi }{b}} \right)^{2} } \right] \\ & \quad + \left( {F_{x} + K_{{\text{P}}} } \right)\left( {\frac{n\pi }{a}} \right)^{2} + \left( {F_{y} + K_{{\text{P}}} } \right)\left( {\frac{m\pi }{b}} \right)^{2} + K_{{\text{W}}} , \\ \end{aligned}$$
$$\hat{S}_{12} = c_{2} \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {T_{13}^{1} \left( {\frac{n\pi }{a}} \right)^{2} + T_{23}^{1} \left( {\frac{m\pi }{b}} \right)^{2} } \right],$$
$$\hat{S}_{13} = - \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {E_{11}^{1} \left( {\frac{n\pi }{a}} \right)^{3} + \left( {E_{21}^{1} + 2E_{66}^{1} } \right)\frac{n\pi }{a}\left( {\frac{m\pi }{b}} \right)^{2} } \right],$$
$$\hat{S}_{14} = - \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {\left( {E_{12}^{1} + 2E_{66}^{1} } \right)\left( {\frac{n\pi }{a}} \right)^{2} \frac{m\pi }{b} + E_{22}^{1} \left( {\frac{m\pi }{b}} \right)^{3} } \right],$$
$$\hat{S}_{22} = c_{2}\left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right) \left[ {T_{33} + E_{44}^{3} \left( {\frac{m\pi }{b}} \right)^{2} + E_{55}^{3} \left( {\frac{n\pi }{a}} \right)^{2} } \right],$$
$$\hat{S}_{23} = -c_{2} \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right) \left( {E_{55}^{3} - T_{31}^{3} } \right)\frac{n\pi }{a},$$
$$\hat{S}_{24} = - c_{2}\left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right) \left( {E_{44}^{3} - T_{32}^{3} } \right)\frac{m\pi }{b},$$
$$\hat{S}_{33} = \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {E_{11}^{3} \left( {\frac{n\pi }{a}} \right)^{2} + E_{66}^{3} \left( {\frac{m\pi }{b}} \right)^{2} + E_{55}^{3} } \right],$$
$$\hat{S}_{34} = \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left( {E_{12}^{3} + E_{66}^{3} } \right)\frac{n\pi }{a}\frac{m\pi }{b},$$
$$\hat{S}_{44} = \left( {1 + \left. {\text{g}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {E_{66}^{3} \left( {\frac{n\pi }{a}} \right)^{2} + E_{22}^{3} \left( {\frac{m\pi }{b}} \right)^{2} + E_{44}^{3} } \right],$$
$$\hat{M}_{11} = - \beta_{31} \left( {\frac{n\pi }{a}} \right)^{2} - \beta_{32} \left( {\frac{m\pi }{b}} \right)^{2} + c_{{\text{d}}} ,\quad \hat{M}_{12} = - c_{2} \left( {\tilde{\beta }_{31} + \tilde{\beta }_{32} } \right)\left( {\frac{n\pi }{a}} \right)^{2} ,\quad \hat{M}_{21} = - { }c_{2} \mu ,$$
$$\hat{M}_{22} = - { }c_{2} \tilde{\mu },\quad \hat{M}_{31} = \gamma_{31} \frac{n\pi }{a},\quad \hat{M}_{32} = c_{2} \tilde{\gamma }_{31} \frac{n\pi }{a},$$
$$\hat{M}_{41} = \gamma_{32} \frac{m\pi }{b},\quad \hat{M}_{42} = \tilde{\gamma }_{32} \frac{m\pi }{b},$$
$$\hat{M}_{13} = { }\hat{M}_{23} = { }\hat{M}_{33} = \hat{M}_{43} = \hat{M}_{14} = \hat{M}_{24} = { }\hat{M}_{34} = \hat{M}_{44} = 0,$$
$$\hat{C}_{11} = I_{2} \left[ {\left( {\frac{n\pi }{a}} \right)^{2} + \left( {\frac{m\pi }{b}} \right)^{2} } \right] + I_{0} ,\quad \hat{C}_{22} = c_{2}^{2} I_{gg} ,\quad \hat{C}_{33} = I_{e}^{2} ,\quad \hat{C}_{44} = I_{e}^{2} ,{ }$$
$$\hat{C}_{12} = c_{2} I_{g} ,\quad \hat{C}_{13} = - I_{e} \frac{n\pi }{a},\quad \hat{C}_{14} = - I_{e} \frac{m\pi }{b},\quad \hat{C}_{23} = \hat{C}_{24} = \hat{C}_{34} = 0.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., El-Shahrany, H.D. Hygrothermal vibration of a cross-ply composite plate with magnetostrictive layers, viscoelastic faces, and a homogeneous core. Engineering with Computers 38 (Suppl 5), 4437–4456 (2022). https://doi.org/10.1007/s00366-021-01482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01482-9

Keywords

Navigation