Skip to main content
Log in

Strong-form meshfree collocation method for multibody thermomechanical contact

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study presents a strong form-based meshfree point collocation method for thermomechanical contact between two deformable bodies. The proposed method, based on Taylor approximation and the method of moving least squares, is implemented in a staggered Newton–Raphson framework to directly discretize and solve the governing nonlinear system of partial differential equations. Following the formulation of the proposed method and the discretization of the governing equations, four numerical examples are presented to verify the computational framework described. The first two examples, involving frictional contact along an inclined surface and Hertzian contact between two half-cylinders, verify the method’s ability to simulate two-body mechanical contact. The next two examples, involving coupled mechanical and thermal contact between rectangular blocks for two loading conditions, verify the ability of the method to simulate thermomechanical contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wriggers P (2006) Computational contact mechanics. Springer-Verlag, Berlin

    MATH  Google Scholar 

  2. Spencer BW, Williamson RL, Stafford DS, Novascone SR, Hales JD, Pastore G (2016) 3D modeling of missing pellet surface defects in BWR fuel. Nucl Eng Des 307:155–171

    Google Scholar 

  3. Williamson RL, Hales JD, Novascone SR, Tonks MR, Gaston DR, Permann CJ, Andrs D, Martineau RC (2012) Multidimensional multiphysics simulation of nuclear fuel behavior. J Nucl Mater 423:149–163

    Google Scholar 

  4. Khoei AR, Bahmani B (2018) Application of an enriched FEM technique in thermo-mechanical contact problems. Comput Mech 62(5):1127–1154

    MathSciNet  MATH  Google Scholar 

  5. Papadopoulos P, Taylor RL (1992) A mixed formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 94:373–389

    MATH  Google Scholar 

  6. Wriggers P, Miehe C (1994) Contact constraints within coupled thermomechanical analysis—a finite element model. Comput Methods Appl Mech Eng 113:301–319

    MathSciNet  MATH  Google Scholar 

  7. Maday Y, Mavriplis C, Patera A (1989) Nonconforming mortar element methods: application to spectral discretizations. Domain Decomposition Methods, SIAM, pp 392–418

  8. McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Meth Eng 48:1525–1547

    MathSciNet  MATH  Google Scholar 

  9. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Meth Eng 62:1183–1225

    MathSciNet  MATH  Google Scholar 

  10. Kim TY, Dolbow J, Laursen TA (2007) A mortared finite element method for frictional contact on arbitrary interfaces. Comput Mech 39:223–235

    MATH  Google Scholar 

  11. Belgacem FB, Hild P, Laborde P (1997) Approximation of the unilateral contact problem by the mortar finite element method. Comptes Rendus de l’Academie des Sciences Series I Mathematics 324:123–127

    MathSciNet  MATH  Google Scholar 

  12. Belgacem FB, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28:263–272

    MathSciNet  MATH  Google Scholar 

  13. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629

    MATH  Google Scholar 

  14. Yoon YC, Song JH (2014) Extended particle difference method for weak and strong discontinuity problems: part i. derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities. Computational Mechanics, 53 (6): 1087–1103

  15. Li S, Liu WK (1998) Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21:28–47

    MathSciNet  MATH  Google Scholar 

  16. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I-formulation and theory. Int J Numer Meth Eng 45:251–288

    MATH  Google Scholar 

  17. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I-applications. Int J Numer Meth Eng 45:289–317

    Google Scholar 

  18. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1–34

    Google Scholar 

  19. Kim DW, Kim Y (2003) Point collocation method using the fast moving least-square reproducing kernel approximation. Int J Numer Meth Eng 56(10):1445–1464

    MathSciNet  MATH  Google Scholar 

  20. Hillman M, Chen JS (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Meth Eng 107:603–630

    MathSciNet  MATH  Google Scholar 

  21. Lee SH, Yoon YC (2004) Meshfree point collocation method for elasticity and crack problems. Int J Numer Meth Eng 61(1):22–48

    MATH  Google Scholar 

  22. Kim DW, Liu WK, Yoon YC, Belytschko T, Lee SH (2007) Meshfree point collocation method with intrinsic enrichment for interface problems. Comput Mech 40:1037–1052

    MathSciNet  MATH  Google Scholar 

  23. Kim DW, Yoon YC, Liu WK, Belytschko T (2007) Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative. J Comput Phys 221:370–394

    MathSciNet  MATH  Google Scholar 

  24. Yoon Y-C, Song J-H (2021) Interface immersed particle difference method for weak discontinuity in elliptic boundary value problems. Comput Methods Appl Mech Eng 375:113650

    MathSciNet  MATH  Google Scholar 

  25. Yoon YC, Song JH (2014) Extended particle difference method for weak and strong discontinuity problems: part II. Formulations and applications for various interfacial singularity problems. Comput Mech 53(6):1105–1128

    MathSciNet  Google Scholar 

  26. Yoon YC, Song JH (2014) Extended particle difference method for moving boundary problems. Comput Mech 54(3):723–743

    MathSciNet  MATH  Google Scholar 

  27. Song JH, Fu Y, Kim TY, Yoon YC, Michopoulos JG, Rabczuk T (2018) Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method. Int J Mech Mater Des 14:491–509

    Google Scholar 

  28. Fu Y, Michopoulos JG, Song JH (2017) Bridging the multi phase-field and molecular dynamics models for the solidification of nano-crystals. J Comput Sci 20:187–197

    MathSciNet  Google Scholar 

  29. Almasi A, Beel A, Kim T-Y, Michopoulos JG, Song J-H (2019) Strong-form collocation method for solidification and mechanical analysis of polycrystalline materials. J Eng Mech 145(10):04019082

    Google Scholar 

  30. Yoon YC, Schaefferkoetter P, Rabczuk T, Song JH (2019) New strong formulation for material nonlinear problems based on the particle difference method. Eng Anal Boundary Elem 98:310–327

    MathSciNet  MATH  Google Scholar 

  31. Almasi A, Kim T-Y, Laursen TA, Song J-H (2019) A strong form meshfree collocation method for frictional contact on a rigid obstacle. Comput Methods Appl Mech Eng 357:112597

    MathSciNet  MATH  Google Scholar 

  32. Beel A, Kim TY, Jiang W, Song JH (2019) Strong form-based meshfree collocation method for wind-driven ocean circulation. Comput Methods Appl Mech Eng 351:404–421

    MathSciNet  MATH  Google Scholar 

  33. Aluru NR (2000) A point collocation method based on reproducing kernel approximations. Int J Numer Meth Eng 47:1083–1121

    MATH  Google Scholar 

  34. Hu HY, Chen JS, Hu W (2011) Error analysis of collocation method based on reproducing kernel approximation. Numer Methods Part Diff Equ 27:554–580

    MathSciNet  MATH  Google Scholar 

  35. De Lorenzis L, Evans JA, Hughes TJR, Reali A (2015) Isogeometric collocation: Neumann boundary conditions and contact. Comput Methods Appl Mech Eng 284:21–54

    MathSciNet  MATH  Google Scholar 

  36. Kruse R, Nguyen-Thanh N, De Lorenzis L, Hughes TJR (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng 296:73–112

    MathSciNet  MATH  Google Scholar 

  37. Yeung S-K, Weeger O, Dunn ML (2017) Isogeometric collocation methods for Cosserat rods and rod structures. Comput Methods Appl Mech Eng 316:100–122

    MathSciNet  MATH  Google Scholar 

  38. Novascone SR, Spencer BW, Hales JD, Williamson RL (2015) Evaluation of coupling approaches for thermomechanical simulations. Nucl Eng Des 295:910–921

    Google Scholar 

  39. Danowski C, Gravemeier V, Yoshihara L, Wall WA (2013) A monolithic computational approach to thermo-structure interaction. Int J Numer Meth Eng 95:1053–1078

    MathSciNet  MATH  Google Scholar 

  40. Farhat C, Park KC, Dubois-Pelerin Y (1991) An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comput Methods Appl Mech Eng 85:349–365

    MATH  Google Scholar 

  41. Laursen TA (2003) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer-Verlag, Berlin

    MATH  Google Scholar 

  42. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  43. Geuzaine C, Remacle J-F (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309–1331

    MATH  Google Scholar 

  44. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hoon Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beel, A., Song, JH. Strong-form meshfree collocation method for multibody thermomechanical contact. Engineering with Computers 39, 89–108 (2023). https://doi.org/10.1007/s00366-021-01513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01513-5

Keywords

Navigation