Skip to main content
Log in

Multiscale finite volume method with adaptive unstructured grids for flow simulation in heterogeneous fractured porous media

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The multiscale finite volume method for discrete fracture modeling in highly heterogeneous porous media is developed. Multiscale methods are sensitive to the heterogeneity contrasts in both matrix and fracture networks. To resolve this, efficient algorithms for generating adaptive unstructured coarse grids are devised. First, primal coarse grids are independently constructed for the matrix and lower dimensional fractures. Then, flexible dual coarse grids are generated based on the fracture and matrix permeability features. Since the proposed algorithms employ the equivalent graph of unstructured grids, the same coarse grid generation strategy is applied for the fractures and matrix domains. Permeability-adapted coarse grids significantly improve the monotonicity behavior of MSFV method in highly heterogeneous fractured porous media. The performance of the method is assessed through several challenging test cases with highly heterogeneous permeability field in both fractures and matrix domain. Numerical results indicate that the extended MSFV method with adaptive unstructured coarse grids is a significant development for accurate flow simulation in heterogeneous fractured media using DFM approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Karimi-Fard M, Durlofsky L, Aziz K (2004) An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J 9:227–236

    Article  Google Scholar 

  2. Reichenberger V, Jakobs H, Bastian P, Helmig R (2006) A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv Water Resour 29:1020–1036

    Article  Google Scholar 

  3. Geiger-Boschung S, Matthai SK, Niessner J, R. (2009) Helmig, black-oil simulations for three-component, three-phase flow in fractured porous media. SPE J 14:338–354

    Article  Google Scholar 

  4. Ahmed R, Edwards MG, Lamine S, Huisman BAH, Pal M (2015) Controlvolume distributed multi-point flux approximation coupled with a lowerdimensional fracture model. J Comput Phys 284:462–489

    Article  MathSciNet  MATH  Google Scholar 

  5. Hou TY, Wu X-H (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134:169–189

    Article  MathSciNet  MATH  Google Scholar 

  6. Jenny P, Lee SH, Tchelepi HA (2003) Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J Comput Phys 187:47–67

    Article  MATH  Google Scholar 

  7. Efendiev Y, Hou TY (2009) Multiscale finite element methods: theory and applications. Springer, Berlin

    MATH  Google Scholar 

  8. Hajibeygi H, Olivares MB, HosseiniMehr M, Pop S, Wheeler M (2020) A benchmark study of the multiscale and homogenization methods for fully implicit multiphase flow simulations. Adv Water Res 143:103674

    Article  Google Scholar 

  9. Chen ZM, Hou TY (2003) A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math Comput 72:541–576

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou H, Lee S, Tchelepi H (2011) Multiscale finite-volume formulation for saturation equations. SPE J 17:198–211

    Article  Google Scholar 

  11. Lee SH, Wolfsteiner C, Tchelepi HA (2008) Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput Geosci 12:351–366

    Article  MathSciNet  MATH  Google Scholar 

  12. Hajibeygi H, Tchelepi HA (2014) Compositional multiscale finite-volume formulation. SPE J 19:316–326

    Article  Google Scholar 

  13. Hajibeygi H, Karvounis D, Jenny P (2011) A hierarchical fracture model for the iterative multiscale finite volume method. J Comput Phys 230:8729–8743

    Article  MathSciNet  MATH  Google Scholar 

  14. Sandve T, Keilegavlen E, Nordbotten J (2014) Physics-based preconditioners for flow in fractured porous media. Water Resources Res 50(2):1357–1373

    Article  Google Scholar 

  15. Tene M, Kobaisi MSA, Hajibeygi H (2016) Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (f-ams). J Comput Phys 321:819–845

    Article  MathSciNet  MATH  Google Scholar 

  16. Shah S, Moyner O, Tene M, Lie K, Hajibeygi H (2016) The multiscale restriction smoothed basis method for fractures porous media (f-msrsb). J Comput Phys 318C:36–57

    Article  MATH  Google Scholar 

  17. Bosma S, Hajibeygi H, Tene M, Tchelepi HA (2017) Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM). J Comput Phys 351:145–164

    Article  MathSciNet  MATH  Google Scholar 

  18. HosseiniMehr M, Vuik C, Hajibeygi H (2020) Adaptive dynamic multilevel simulation of fractured geothermal reservoirs. J Comput Phys 7:100061

    MathSciNet  Google Scholar 

  19. Zhang W, Diab W, Hajibeygi H, Al Kobiasi M (2020) A computational workflow for flow and transport in fractured porous media based on a hierarchical nonlinear discrete fracture modeling approach. Energies 13(24):6667

    Article  Google Scholar 

  20. Xu F, Hajibeygi H, Sluys LJ (2021) Multiscale extended finite element method for deformable fractured porous media. J Comput Phys 436:110287

    Article  MathSciNet  MATH  Google Scholar 

  21. Mehrdoost Z (2019) Unstructured grid adaptation for multiscale finite volume method. Comput Geosci 23:1293–1316

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou H, Tchelepi HA (2008) Operator based multiscale method for compressible flow. SPE J 13:267–273

    Article  Google Scholar 

  23. Wallis J, Tchelepi HA (2010) Apparatus, method and system for improved reservoir simulation using an algebraic cascading class linear solver, uS Patent 7,684,967

  24. Moyner O, Lie K (2014) The multiscale finite volume method on unstructured grids. SPE J 19:816–831

    Article  Google Scholar 

  25. Moyner O, Lie K (2016) A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. J Comput Phys 304:46–71

    Article  MathSciNet  MATH  Google Scholar 

  26. Hajibeygi H, Bonfigli G, Hesse M, Jenny P (2008) Iterative multiscale finite-volume method. J Comput Phys 227:8604–8621

    Article  MathSciNet  MATH  Google Scholar 

  27. Tene M, Wang Y, Hajibeygi H (2015) Adaptive algebraic multiscale solver for compressible flow in heterogeneous porous media. J Comput Phys 300:679–694

    Article  MathSciNet  MATH  Google Scholar 

  28. Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  29. Mehrdoost Z, Bahrainian SS (2016) A multilevel tabu search algorithm for balanced partitioning of unstructured grids. Int J Numer Meth Engng 105:678–692

    Article  MathSciNet  Google Scholar 

  30. Christie M, Blunt M (2001) Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv Evaluat Eng 4(4):308–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Mehrdoost.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrdoost, Z. Multiscale finite volume method with adaptive unstructured grids for flow simulation in heterogeneous fractured porous media. Engineering with Computers 38, 4961–4977 (2022). https://doi.org/10.1007/s00366-021-01520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01520-6

Keywords

Navigation