Skip to main content
Log in

On the dynamics and wave propagation of reinforced composite nanosystem

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this work, nonlocal dynamic formulation of a graphene nanoplatelets reinforced composite doubly curved micro/nano shell is presented based on Hamilton’s principle using a shear deformable model. The structure is composed of a honeycomb core integrated with graphene nanoplatelets reinforced face-sheets. The material properties of honeycomb core are computed using available formula in literature. Furthermore, material properties of composite reinforced face-sheets are assumed to vary along the thickness direction based on Halpin–Tsai micromechanical models and rule of mixture. The size-dependent governing equations of motion are derived through employing nonlocal equations. After verification of the formulation and solution procedure using a comparative study, the large parametric results are presented to discuss impact of main geometric, material and small scale parameters on the free vibration characteristics. As a main result of the present paper is this fact that the lowest frequencies are obtained for \(\phi_{0} = {{h_{0} } \mathord{\left/ {\vphantom {{h_{0} } {l_{0} }}} \right. \kern-\nulldelimiterspace} {l_{0} }} = 0.6\). It is concluded that with increase of \(\phi_{0}\) from small values, the mass is increased more than increase of stiffness that leads to a decrease in frequencies unlike higher values of \(\phi_{0}\), in which an increase in structural stiffness is reached respect to a small increase in mass that leads to a main increase in frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aghababaei R, Reddy JN (2009) Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J Sound Vib 326:277–289

    Google Scholar 

  2. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. CMC-Comput Mater Cont 59(1):345–359

    Google Scholar 

  3. Arefi M (2013) Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder. Acta Mech 224(11):2771–2783

    MathSciNet  MATH  Google Scholar 

  4. Arefi M, Bidgoli EMR, Rabczuk T (2019) Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Eur J Mech-A/Solids 77:103802

    MathSciNet  MATH  Google Scholar 

  5. Arefi M, Bidgoli EMR, Rabczuk T (2019) Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. Thin-Walled Struct 142:444–459

    Google Scholar 

  6. Arefi M, Firouzeh S, Bidgoli EMR, Civalek Ö (2020) Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compos Struct 247:112391

    Google Scholar 

  7. Arefi M, Karroubi R, Irani-Rahaghi M (2016) Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer. Appl Math Mech 37(7):821–834

    MathSciNet  Google Scholar 

  8. Arefi M, Kiani Moghaddam S, Mohammad-Rezaei Bidgoli E, Kiani M, Civalek O (2020) Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads. Compos Struct 255:112924

    Google Scholar 

  9. Arefi M, Mohammad-Rezaei Bidgoli E, Dimitri R, Bacciocchi M, Tornabene F (2019) Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Compos Part B Eng 166:1–12

    Google Scholar 

  10. Arefi M, Mohammad-Rezaei Bidgoli E, Dimitri R, Tornabene F (2018) Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aero Sci Tech 81:108–117

    Google Scholar 

  11. Arefi M, Rahimi GH (2011) Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory. Sci Res Essays 5(12):1442–1454

    Google Scholar 

  12. Arefi M, Rahimi GH (2011) Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure. Smart Struct Syst 8(5):433–447

    Google Scholar 

  13. Arefi M, Zenkour AM (2019) Effect of thermo-magneto-electro-mechanical fields on the bending behaviors of a three-layered nanoplate based on sinusoidal shear-deformation plate theory. J Sandw Struct Mater 21(2):639–669

    Google Scholar 

  14. Ashraf MA, Liu Z, Zhang D, Pham BT (2020) Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates. Eng Comput 1–21

  15. Burlayenko VN, Sadowski T (2009) Analysis of structural performance of sandwich plates with foam-filled aluminum hexagonal honeycomb core. Comput Mater Sci 45:658–662

    Google Scholar 

  16. Chakravorty D, Bandyopadhyay JN, Sinha PK (1996) Finite element free vibration analysis of doubly curved laminated composite shells. J Sound Vib 191(4):491–504

    MATH  Google Scholar 

  17. Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Wang Y (2021) Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. Sci Total Environ 756:143871

    Google Scholar 

  18. Chen R, Cheng Y, Wang P, Wang Y, Wang Q, Yang Z, Su C (2021) Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem Eng J (Lausanne, Switzerland: 1996), 421

  19. Cheng H, Li, T, Li X, Feng J, Tang T, Qin D (2021) Facile synthesis of Co9S8 nanocages as an electrochemical sensor for luteolin detection. J Electrochem Soc

  20. Xie Y, Meng X, Mao D, Qin Z, Wan L, Huang Y (2021) Homogeneously dispersed graphene nanoplatelets as long-term corrosion inhibitors for aluminum matrix composites. ACS Appl Mater Interfaces 13(27):32161–32174

    Google Scholar 

  21. Duan X, Xu Z, Sun X, Deng B, Liu J (2021) Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels. Energy (Oxford) 231:121069

    Google Scholar 

  22. Feng P, Chang H, Liu X, Ye S, Shu X, Ran Q (2020) The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Mater Des 186:108320

    Google Scholar 

  23. Guo J, Shi D, Wang Q, Tang J, Shuai C (2018) Dynamic analysis of laminated doubly-curved shells with general boundary conditions by means of a domain decomposition method. Int J Mech Sci 138–139:159–186

    Google Scholar 

  24. Guo H, Yang T, Żur KK, Reddy JN (2021) On the flutter of matrix cracked laminated composite plates reinforced with graphene nanoplatelets. Thin-Walled Struct 158:107161

    Google Scholar 

  25. Guo H, Zhuang X, Rabczuk T (2019) A deep collocation method for the bending analysis of kirchhoff plate. CMC-Comput Mater Cont 59(2):433–456

    Google Scholar 

  26. Hamdia KM, Ghasemi H, Zhuang X, Alajlan N, Rabczuk T (2018) Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput Methods Appl Mech Eng 337:95–109

    MathSciNet  MATH  Google Scholar 

  27. Lu Z, Zhao L, Ding H, Chen L (2021) A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J Sound vib 509:116251

    Google Scholar 

  28. He B, Mortazavi B, Zhuang X, Rabczuk T (2016) Modeling Kapitza resistance of two-phase composite material. Compos Struct 152:939–946

    Google Scholar 

  29. Karami B, Shahsavari D, Ordookhani A, Gheisari P, Li L, Eyvazian A (2020) Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions. Steel Compos Struct 36(6):689–702

    Google Scholar 

  30. Kiani Y, Shakeri M, Eslami MR (2012) Thermoelastic free vibration and dynamic behavior of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation. Acta Mech 223:1199–1218

    MathSciNet  MATH  Google Scholar 

  31. Wang P, Wang S, Kang Y, Sun Z, Wang X, Meng Y, Xie W (2021) Cauliflower-shaped Bi2O3–ZnO heterojunction with superior sensing performance towards ethanol. J Alloys Compd 854:157152

    Google Scholar 

  32. Zhao N, Deng L, Luo D, Zhang P (2020) One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl Surf Sci 526:146696

    Google Scholar 

  33. Li H, Pang F, Li Y, Gao C (2019) Application of first-order shear deformation theory for the vibration analysis of functionally graded doubly-curved shells of revolution. Compos Struct 212:22–42

    Google Scholar 

  34. Li H, Pang F, Miao X, Du Y, Tian H (2018) A semi-analytical method for vibration analysis of stepped doubly-curved shells of revolution with arbitrary boundary conditions. Thin-Walled Struct 129:125–144

    Google Scholar 

  35. Li H, Pang F, Wang X, Du Y, Chen H (2018) Free vibration analysis for composite laminated doubly-curved shells of revolution by a semi analytical Method. Compos Struct 201:86–111

    Google Scholar 

  36. Li X, Shi T, Li B, Chen X, Zhang C, Guo Z, Zhang Q (2019) Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance. Mater Des 183:108152

    Google Scholar 

  37. Li J, Tang F, Habibi M (2020) Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Eng Comput 1–22

  38. Mahapatra TR, Panda SK, Kar VR (2016) Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model. Mech Adv Mater Struct 23:1343–1359

    Google Scholar 

  39. Majidi-Mozafari K, Bahaadini R, Saidi AR, Khodabakhsh R (2020) An analytical solution for vibration analysis of sandwich plates reinforced with graphene nanoplatelets. Eng Comput 1–17

  40. Malikan TM, Krasheninnikov M, Eremeyev VA (2020) Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. Int J Eng Sci 148:103210

    MathSciNet  MATH  Google Scholar 

  41. Miao Z, Xiaohe S, Xuewu O, Yongbing T (2019) Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Mater 16:65–84

    Google Scholar 

  42. Mozafari H, Khatami S, Molatefi H, Crupi V, Epasto G, Guglielmino E (2016) Finite element analysis of foam-filled honeycomb structures under impact loading and crashworthiness design. Int J Crashworth 21(2):148–160

    Google Scholar 

  43. Msekh MA, Cuong NH, Zi G, Areias P, Zhuang X, Rabczuk T (2018) Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng Fract Mech 188:287–299

    Google Scholar 

  44. Nguyen NV, Nguyen LB, Nguyen-Xuan H, Lee J (2020) Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on B ́ezier extraction of NURBS. Int J Mech Sci 180:105692

    Google Scholar 

  45. Ni Z, Cao X, Wang X, Zhou S, Zhang C, Xu B, Ni Y (2021) Facile synthesis of Copper(I) oxide nanochains and the photo-thermal conversion performance of its nanofluids. Coatings 11:749

    Google Scholar 

  46. Numanoğlu HM, Civalek Ö (2019) On the dynamics of small-sized structures. Int J Eng Sci 145:103164

    MathSciNet  MATH  Google Scholar 

  47. Pang F, Li H, Wang X, Miao X, Li S (2018) A semi analytical method for the free vibration of doubly-curved shells of revolution. Comput Math Appl 75(9):3249–3268

    MathSciNet  MATH  Google Scholar 

  48. Rabczuk T, Ren H, Zhuang X (2019) A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. CMC-Comput Mater Cont 59(1):31–55

    Google Scholar 

  49. Rahman H, Jamshed R, Hameed H, Raza S (2011) Finite element analysis (FEA) of honeycomb sandwich panel for continuum properties evaluation and core height influence on the dynamic behavior. Adv Mater Res 326:1–10

    Google Scholar 

  50. Sadowski T, Bęc J (2011) Effective properties for sandwich plates with aluminium foil honeycomb coreand polymer foam filling – Static and dynamic response. Comput Mater Sci 50:1269–1275

    Google Scholar 

  51. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Meth Appl Mech Eng 362:112790

    MathSciNet  MATH  Google Scholar 

  52. Liu C, Gao X, Chi D, He Y, Liang M, Wang H (2021) On-line chatter detection in milling using fast kurtogram and frequency band power. Eur J Mech A Solids 90:104341

    MATH  Google Scholar 

  53. Shamsaddini Lori E, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput 1–20

  54. Sheng M, Zhang F, Ji B, Tong X, Tang Y (2017) A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv Energy Mater 7(7):1601963

    Google Scholar 

  55. Shi C, Zhang X, Zhang X, Chen P, Xu L (2021) Ultrasonic desulfurization of amphiphilic Magnetic-Janus nanosheets in oil-water mixture system. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2021.105662

    Article  Google Scholar 

  56. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Des Struct Mach

  57. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Google Scholar 

  58. Sorokin SV, Grishina SV, Ershova OA (2001) Analysis and control of vibrations ofhoneycomb plates by parametric stiffness modulations. Smart Mater Struct 10(5):1031–1045

    Google Scholar 

  59. Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2014) A computational library for multiscale modeling of material failure. Comput Mech 53:1047–1071

    MathSciNet  Google Scholar 

  60. Thai CH, Ferreira AJM, Tran TD, Phung-Van P (2019) Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos Struct 220:749–759

    Google Scholar 

  61. Torabi K, Afshari H, Aboutalebi FH (2017) Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. J Sandw Struct Mater 21(8):2887–2920

    Google Scholar 

  62. Tran TT, Pham QH, Nguyen-Thoi T, Tran TV (2020) Dynamic analysis of sandwich auxetic honeycomb plates subjected to moving oscillator load on elastic foundation. Adv Mater Sci Eng 309130

  63. Tran TT, Tran VK, Le PB, Phung VM, Do VT, Nguyen HN (2020) Forced vibration analysis of laminated composite shells reinforced with graphene nanoplatelets using finite element method. Adv Civil Eng 1471037

  64. Upreti S, Singh VK, Kamal SK, Jain A, Dixit A (2020) Modelling and analysis of honeycomb sandwich structure using finite element method. Mater Today: Proc 25(4):620–625

    Google Scholar 

  65. Vu-Bac N, Zhuang X, Rabczuk T (2019) Uncertainty quantification for mechanical properties of polyethylene based on fully atomistic model. Materials 12(21):3613

    Google Scholar 

  66. Ye R, Liu P, Shi K, Yan B (2020) State damping control: a novel simple method of rotor UAV with high performance. IEEE access 8:214346–214357

    Google Scholar 

  67. Li T, Dai Z, Yu M, Zhang W (2021) Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths. Eng Appl Comput Fluid Mech 15(1):549–560

    Google Scholar 

  68. Zhang Y, Li HN, Li C, Huang C, Ali HM, Xu X, Mao C, Ding W, Cui X, Yang M, Yu T, Jamil M, Gupta MK, Jia DS, Z, (2021) Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. https://doi.org/10.1007/s40544-021-0536-y

    Article  Google Scholar 

  69. Zhang M, Zhang L, Tian S, Zhang X, Guo J, Guan X, Xu P (2020) Effects of graphite particles/Fe3+ on the properties of anoxic activated sludge. Chemosphere (Oxford) 253:126638

    Google Scholar 

  70. Zhao X, Chen B, Li YH, Zhu WD, Nkiegaing FJ, Shao YB (2020) Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J Sound Vib 464:115001. https://doi.org/10.1016/j.jsv.2019.115001

    Article  Google Scholar 

  71. Zhao J, Choe K, Xie F, Wang A, Shuai C, Wang Q (2018) Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions. Compos Part B: Eng 155:369–381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaochang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{gathered} \left( {J_{1} ,J_{2} ,J_{3} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{{11b}} \left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{{11c}} \left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{{11t}} \left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z}} } \hfill \\ \left( {J_{4} ,J_{5} ,J_{6} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{{12b}} \left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{{12c}} \left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{{12t}} \left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z}} } \hfill \\ \left( {J_{8} ,J_{9} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {\frac{{k_{s} }}{{R_{{x_{1} }} }}Q_{{55b}} \left( {1,\frac{1}{{R_{{x_{1} }} }}} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\frac{{k_{s} }}{{R_{{x_{1} }} }}Q_{{55c}} \left( {1,\frac{1}{{R_{{x_{1} }} }}} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {\frac{{k_{s} }}{{R_{{x_{1} }} }}Q_{{55t}} \left( {1,\frac{1}{{R_{{x_{1} }} }}} \right){\text{d}z}} } \hfill \\ \left( {J_{{11}} ,J_{{12}} ,J_{{13}} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{{66b}} \left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{{66c}} \left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z}} \hfill \\ + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{{66t}} \left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z}} \hfill \\ \left( {J_{{14}} ,J_{{15}} ,J_{{16}} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {\frac{1}{2}Q_{{66b}} z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)\left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z}} \hfill \\ + \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\frac{1}{2}Q_{{66c}} z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)\left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z}} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {\frac{1}{2}Q_{{66t}} z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)\left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z}} \hfill \\ \left( {J_{{17}} ,J_{{18}} ,J_{{19}} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{{21b}} \left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{{21c}} \left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{{21t}} \left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z}} } \hfill \\ \left( {J_{{20}} ,J_{{21}} ,J_{{22}} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{{22b}} \left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{{22c}} \left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{{22t}} \left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z}} } \hfill \\ \left( {J_{{24}} ,J_{{25}} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {\frac{{k_{s} }}{{R_{{x_{2} }} }}Q_{{44b}} \left( {1,\frac{1}{{R_{{x_{2} }} }}} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\frac{{k_{s} }}{{R_{{x_{2} }} }}Q_{{44c}} \left( {1,\frac{1}{{R_{{x_{2} }} }}} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {\frac{{k_{s} }}{{R_{{x_{2} }} }}Q_{{44t}} \left( {1,\frac{1}{{R_{{x_{2} }} }}} \right){\text{d}z}} } \hfill \\ \left( {J_{{27}} ,J_{{28}} ,J_{{29}} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{{11b}} z\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{{11c}} z\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{{11t}} z\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z}} } \hfill \\ \left( {J_{{30}} ,J_{{31}} ,J_{{32}} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{{12b}} z\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{{12c}} z\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{{12t}} z\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z}} } \hfill \\ \hfill \\ \end{gathered}$$
$$\left( {J_{34} ,J_{35} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {k_{s} Q_{55b} \left( {1,\frac{1}{{R_{{x_{1} }} }}} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {k_{s} Q_{55c} \left( {1,\frac{1}{{R_{{x_{1} }} }}} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {k_{s} Q_{55t} \left( {1,\frac{1}{{R_{{x_{1} }} }}} \right){\text{d}z}} }$$
$$\left( {J_{37} ,J_{38} ,J_{39} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{66b} z\left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{66c} z\left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z}}$$
$$\begin{aligned} & \qquad \qquad \qquad + \int\limits_{{\tfrac{{h_{c} }}{2}}}^{{\tfrac{{h_{c} }}{2} + h_{t} }} {Q_{{66t}} z\left( {1,z,\frac{1}{2}z\left( {\frac{1}{{R_{{x_{1} }} }} - \frac{1}{{R_{{x_{2} }} }}} \right)} \right){\text{d}z}} \\ & \left( {J_{{40}} ,J_{{41}} ,J_{{42}} } \right) = \int\limits_{{ - \tfrac{{h_{c} }}{2} - h_{b} }}^{{ - \tfrac{{h_{c} }}{2}}} {Q_{{21b}} z\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \tfrac{{h_{c} }}{2}}}^{{\tfrac{{h_{c} }}{2}}} {Q_{{21c}} z\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + \int\limits_{{\tfrac{{h_{c} }}{2}}}^{{\tfrac{{h_{c} }}{2} + h_{t} }} {Q_{{21t}} z\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z}} } \\ \end{aligned}$$
$$\left( {J_{43} ,J_{44} ,J_{45} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {Q_{22b} z\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {Q_{22c} z\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {Q_{22t} z\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z}} }$$
$$\left( {J_{47} ,J_{48} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {k_{s} Q_{44b} \left( {1,\frac{1}{{R_{{x_{2} }} }}} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {k_{s} Q_{44c} \left( {1,\frac{1}{{R_{{x_{2} }} }}} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {k_{s} Q_{44t} \left( {1,\frac{1}{{R_{{x_{2} }} }}} \right){\text{d}z}} }$$
$$\left( {J_{50} ,J_{51} ,J_{52} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {\frac{{Q_{11b} }}{{R_{{x_{1} }} }}\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\frac{{Q_{11c} }}{{R_{{x_{1} }} }}\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {\frac{{Q_{11t} }}{{R_{{x_{1} }} }}\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z}} }$$
$$\left( {J_{53} ,J_{54} ,J_{55} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {\frac{{Q_{12b} }}{{R_{{x_{1} }} }}\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\frac{{Q_{12c} }}{{R_{{x_{1} }} }}\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {\frac{{Q_{12t} }}{{R_{{x_{1} }} }}\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z}} }$$
$$\left( {J_{57} ,J_{58} ,J_{59} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {\frac{{Q_{21b} }}{{R_{{x_{2} }} }}\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\frac{{Q_{21c} }}{{R_{{x_{2} }} }}\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {\frac{{Q_{21t} }}{{R_{{x_{2} }} }}\left( {1,\frac{1}{{R_{{x_{1} }} }},z} \right){\text{d}z}} }$$
$$\left( {J_{60} ,J_{61} ,J_{62} } \right) = \int\limits_{{ - \frac{{h_{c} }}{2} - h_{b} }}^{{ - \frac{{h_{c} }}{2}}} {\frac{{Q_{22b} }}{{R_{{x_{2} }} }}\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + } \int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\frac{{Q_{22c} }}{{R_{{x_{2} }} }}\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{t} }} {\frac{{Q_{22t} }}{{R_{{x_{2} }} }}\left( {1,\frac{1}{{R_{{x_{2} }} }},z} \right){\text{d}z}} }$$
(37)

Appendix B

$$K_{11} = \frac{{J_{1} m^{2} \pi^{2} }}{{a^{2} }} + \frac{{n^{2} \pi^{2} }}{{b^{2} }}\left( {J_{11} + J_{13} + J_{14} + J_{16} } \right) + J_{9}$$
$$K_{12} = \frac{{m\pi^{2} n}}{ab}\left( {J_{4} + J_{11} + J_{14} - J_{13} - J_{16} } \right)$$
$$K_{13} = - \frac{m\pi }{a}\left( {J_{2} + J_{5} + J_{8} } \right)$$
$$K_{14} = \frac{{J_{3} m^{2} \pi^{2} }}{{a^{2} }} + \frac{{n^{2} \pi^{2} }}{{b^{2} }}\left( {J_{12} + J_{15} } \right) - J_{8}$$
$$K_{15} = \frac{{m\pi^{2} n}}{ab}\left( {J_{6} + J_{12} + J_{15} } \right)$$
$$K_{21} = \frac{{m\pi^{2} n}}{ab}\left( {J_{11} + J_{13} + J_{17} - J_{14} - J_{16} } \right)$$
$$K_{22} = \frac{{m^{2} \pi^{2} }}{{a^{2} }}\left( {J_{11} + J_{16} - J_{13} - J_{14} } \right) + \frac{{J_{20} n^{2} \pi^{2} }}{{b^{2} }} + J_{25}$$
$$K_{23} = - \frac{n\pi }{b}\left( {J_{18} + J_{21} + J_{24} } \right)$$
$$K_{24} = \frac{{m\pi^{2} n}}{ab}\left( {J_{12} + J_{19} - J_{15} } \right)$$
$$K_{25} = \frac{{m^{2} \pi^{2} }}{{a^{2} }}\left( {J_{12} - J_{15} } \right) + \frac{{J_{22} n^{2} \pi^{2} }}{{b^{2} }} - J_{24}$$
$$K_{31} = - \frac{m\pi }{a}\left( {J_{35} + J_{50} + J_{57} } \right)$$
$$K_{32} = - \frac{n\pi }{b}\left( {J_{48} + J_{53} + J_{60} } \right)$$
$$K_{33} = \frac{{J_{34} m^{2} \pi^{2} }}{{a^{2} }} + \frac{{J_{47} n^{2} \pi^{2} }}{{b^{2} }} + J_{51} + J_{54} + J_{58} + J_{61} - k_{1} + k_{2} \left( { - \frac{{m^{2} \pi^{2} }}{{a^{2} }} - \frac{{n^{2} \pi^{2} }}{{b^{2} }}} \right)$$
$$K_{34} = - \frac{m\pi }{a}\left( {J_{52} + J_{59} - J_{34} } \right)$$
$$K_{35} = - \frac{n\pi }{b}\left( {J_{55} + J_{62} - J_{47} } \right)$$
$$K_{41} = \frac{{J_{27} m^{2} \pi^{2} }}{{a^{2} }} + \frac{{n^{2} \pi^{2} }}{{b^{2} }}\left( {J_{37} + J_{39} } \right) - J_{35}$$
$$K_{42} = \frac{{m\pi^{2} n}}{ab}\left( {J_{30} + J_{37} - J_{39} } \right)$$
$$K_{43} = - \frac{m\pi }{a}\left( {J_{28} + J_{31} - J_{34} } \right)$$
$$K_{44} = \frac{{J_{29} m^{2} \pi^{2} }}{{a^{2} }} + \frac{{J_{38} n^{2} \pi^{2} }}{{b^{2} }} + J_{34}$$
$$K_{45} = \frac{{m\pi^{2} n}}{ab}\left( {J_{32} + J_{38} } \right)$$
$$K_{51} = \frac{{m\pi^{2} n}}{ab}\left( {J_{37} + J_{39} + J_{40} } \right)$$
$$K_{52} = \frac{{m^{2} \pi^{2} }}{{a^{2} }}\left( {J_{37} - J_{39} } \right) + \frac{{J_{43} n^{2} \pi^{2} }}{{b^{2} }} - J_{48}$$
$$K_{53} = - \frac{n\pi }{b}\left( {J_{41} + J_{44} - J_{47} } \right)$$
$$K_{54} = \frac{{m\pi^{2} n}}{ab}\left( {J_{38} + J_{42} } \right)$$
$$K_{55} = \frac{{J_{38} m^{2} \pi^{2} }}{{a^{2} }} + \frac{{J_{45} n^{2} \pi^{2} }}{{b^{2} }} + J_{47}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Liu, S., Wang, P. et al. On the dynamics and wave propagation of reinforced composite nanosystem. Engineering with Computers 39, 151–171 (2023). https://doi.org/10.1007/s00366-021-01529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01529-x

Keywords