Skip to main content
Log in

Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

There is a new nature-inspired algorithm called salp swarm algorithm (SSA), due to its simple framework, it has been widely used in many fields. But when handling some complicated optimization problems, especially the multimodal and high-dimensional optimization problems, SSA will probably have difficulties in convergence performance or dropping into the local optimum. To mitigate these problems, this paper presents a chaotic SSA with differential evolution (CDESSA). In the proposed framework, chaotic initialization and differential evolution are introduced to enrich the convergence speed and accuracy of SSA. Chaotic initialization is utilized to produce a better initial population aim at locating a better global optimal. At the same time, differential evolution is used to build up the search capability of each agent and improve the sense of balance of global search and intensification of SSA. These mechanisms collaborate to boost SSA in accelerating convergence activity. Finally, a series of experiments are carried out to test the performance of CDESSA. Firstly, IEEE CEC2014 competition fuctions are adopted to evaluate the ability of CDESSA in working out the real-parameter optimization problems. The proposed CDESSA is adopted to deal with feature selection (FS) problems, then five constrained engineering optimization problems are also adopted to evaluate the property of CDESSA in dealing with real engineering scenarios. Experimental results reveal that the proposed CDESSA method performs significantly better than the original SSA and other compared methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2019) An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105884

    Article  Google Scholar 

  2. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  3. Yu H, Zhao N, Wang P, Chen H, Li C (2020) Chaos-enhanced synchronized bat optimizer. Appl Math Model 77:1201–1215. https://doi.org/10.1016/j.apm.2019.09.029

    Article  Google Scholar 

  4. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  5. Wei Y, Lv H, Chen M, Wang M, Heidari AA, Chen H, Li C (2020) Predicting entrepreneurial intention of students: an extreme learning machine with gaussian barebone Harris Hawks optimizer. IEEE Access 8:76841–76855. https://doi.org/10.1109/ACCESS.2020.2982796

    Article  Google Scholar 

  6. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  7. Zong WG, Joong HK, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  8. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95—international conference on neural networks, vol 1944, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  9. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  10. Yang X-S (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, Berlin, pp 240–249. https://doi.org/10.1007/978-3-642-32894-7_27

  11. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  12. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  13. Abbassi A, Abbassi R, Heidari AA, Oliva D, Chen H, Habib A, Jemli M, Wang M (2020) Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach. Energy 198:117333. https://doi.org/10.1016/j.energy.2020.117333

    Article  Google Scholar 

  14. Zhang Q, Chen H, Heidari AA, Zhao X, Xu Y, Wang P, Li Y, Li C (2019) Chaos-induced and mutation-driven schemes boosting salp chains-inspired optimizers. IEEE Access 7:31243–31261. https://doi.org/10.1109/access.2019.2902306

    Article  Google Scholar 

  15. Gupta S, Deep K, Heidari AA, Moayedi H, Chen H (2021) Harmonized salp chain-built optimization. Eng Comput 37:1049–1079. https://doi.org/10.1007/s00366-019-00871-5

    Article  Google Scholar 

  16. Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari AA (2020) Nature-inspired optimizers: theories, literature reviews and applications. Springer International Publishing, Cham, pp 185–199. https://doi.org/10.1007/978-3-030-12127-3_11

  17. Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67. https://doi.org/10.1016/j.knosys.2018.05.009

    Article  Google Scholar 

  18. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48:3462–3481. https://doi.org/10.1007/s10489-018-1158-6

    Article  Google Scholar 

  19. Tubishat M, Ja’afar S, Alswaitti M, Mirjalili S, Idris N, Ismail MA, Omar MS (2021) Dynamic Salp swarm algorithm for feature selection. Expert Syst Appl 164:113873. https://doi.org/10.1016/j.eswa.2020.113873

    Article  Google Scholar 

  20. El-Fergany AA (2018) Extracting optimal parameters of PEM fuel cells using salp swarm optimizer. Renew Energy 119:641–648. https://doi.org/10.1016/j.renene.2017.12.051

    Article  Google Scholar 

  21. Zhang J, Wang Z, Luo X (2018) Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10(6):815. https://doi.org/10.3390/w10060815

    Article  Google Scholar 

  22. Hussien AG, Hassanien AE, Houssein EH (2017) Swarming behaviour of salps algorithm for predicting chemical compound activities. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), pp 315–320. https://doi.org/10.1109/INTELCIS.2017.8260072

  23. Zhao H, Huang G, Yan N (2018) Forecasting energy-related CO2 emissions employing a novel SSA-LSSVM model: considering structural factors in China. Energies. https://doi.org/10.3390/en11040781

    Article  Google Scholar 

  24. Ateya AA, Muthanna A, Vybornova A, Algarni AD, Abuarqoub A, Koucheryavy Y, Koucheryavy A (2019) Chaotic salp swarm algorithm for SDN multi-controller networks. Eng Sci Technol 22:1001–1012. https://doi.org/10.1016/j.jestch.2018.12.015

    Article  Google Scholar 

  25. Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Jiang L, Sun L (2019) Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J Clean Prod 215:1203–1222. https://doi.org/10.1016/j.jclepro.2019.01.150

    Article  Google Scholar 

  26. Wang J, Gao Y, Chen X (2018) A novel hybrid interval prediction approach based on modified lower upper bound estimation in combination with multi-objective salp swarm algorithm for short-term load forecasting. Energies 11:1–30. https://doi.org/10.3390/en11061561

    Article  Google Scholar 

  27. Abbassi R, Abbassi A, Heidari AA, Mirjalili S (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manag 179:362–372. https://doi.org/10.1016/j.enconman.2018.10.069

    Article  Google Scholar 

  28. Abadi MQH, Rahmati S, Sharifi A, Ahmadi M (2021) HSSAGA: designation and scheduling of nurses for taking care of COVID-19 patients using novel method of hybrid salp swarm algorithm and genetic algorithm. Appl Soft Comput 108:107449. https://doi.org/10.1016/j.asoc.2021.107449

    Article  Google Scholar 

  29. Abd el-sattar S, Kamel S, Ebeed M, Jurado F (2021) An improved version of salp swarm algorithm for solving optimal power flow problem. Soft Comput 25:4027–4052. https://doi.org/10.1007/s00500-020-05431-4

    Article  Google Scholar 

  30. Ewees AA, Al-qaness MAA, Abd EM (2021) Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times. Appl Math Model 94:285–305. https://doi.org/10.1016/j.apm.2021.01.017

    Article  MathSciNet  MATH  Google Scholar 

  31. Salgotra R, Singh U, Singh S, Singh G, Mittal N (2021) Self-adaptive salp swarm algorithm for engineering optimization problems. Appl Math Model 89:188–207. https://doi.org/10.1016/j.apm.2020.08.014

    Article  MathSciNet  MATH  Google Scholar 

  32. Ibrahim RA, Ewees AA, Oliva D, Abd EM, Lu S (2019) Improved salp swarm algorithm based on particle swarm optimization for feature selection. J Ambient Intell Humaniz Comput 10:3155–3169. https://doi.org/10.1007/s12652-018-1031-9

    Article  Google Scholar 

  33. Rizk-Allah RM, Hassanien AE, Elhoseny M, Gunasekaran M (2019) A new binary salp swarm algorithm: development and application for optimization tasks. Neural Comput Appl 31:1641–1663. https://doi.org/10.1007/s00521-018-3613-z

    Article  Google Scholar 

  34. Bairathi D, Gopalani D (2021) An improved salp swarm algorithm for complex multi-modal problems. Soft Comput 25:10441–10465. https://doi.org/10.1007/s00500-021-05757-7

    Article  Google Scholar 

  35. Braik M, Sheta A, Turabieh H, Alhiary H (2021) A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm. Soft Comput 25:181–206. https://doi.org/10.1007/s00500-020-05130-0

    Article  Google Scholar 

  36. Nautiyal B, Prakash R, Vimal V, Liang G, Chen H (2021) Improved salp swarm algorithm with mutation schemes for solving global optimization and engineering problems. Eng Comput. https://doi.org/10.1007/s00366-020-01252-z

    Article  Google Scholar 

  37. Ouaar F, Boudjemaa R (2021) Modified salp swarm algorithm for global optimisation. Neural Comput Appl 33:8709–8734. https://doi.org/10.1007/s00521-020-05621-z

    Article  Google Scholar 

  38. Panda N, Majhi SK (2021) Oppositional salp swarm algorithm with mutation operator for global optimization and application in training higher order neural networks. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-10304-x

    Article  Google Scholar 

  39. Ren H, Li J, Chen H, Li C (2021) Stability of salp swarm algorithm with random replacement and double adaptive weighting. Appl Math Model 95:503–523. https://doi.org/10.1016/j.apm.2021.02.002

    Article  Google Scholar 

  40. Saafan MM, El-Gendy EM (2021) IWOSSA: an improved whale optimization salp swarm algorithm for solving optimization problems. Expert Syst Appl 176:114901. https://doi.org/10.1016/j.eswa.2021.114901

    Article  Google Scholar 

  41. Chen W, Zhang J, Lin Y, Chen N, Zhan Z, Chung HS, Li Y, Shi Y (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17:241–258. https://doi.org/10.1109/TEVC.2011.2173577

    Article  Google Scholar 

  42. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295. https://doi.org/10.1109/TEVC.2005.857610

    Article  Google Scholar 

  43. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13:398–417. https://doi.org/10.1109/TEVC.2008.927706

    Article  Google Scholar 

  44. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10:646–657. https://doi.org/10.1109/TEVC.2006.872133

    Article  Google Scholar 

  45. Zhu A, Xu C, Li Z, Wu J, Liu Z (2015) Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. J Syst Eng Electron 26:317–328. https://doi.org/10.1109/JSEE.2015.00037

    Article  Google Scholar 

  46. Luo J, Chen H, Zhang Q, Xu Y, Huang H, Zhao X (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64:654–668. https://doi.org/10.1016/j.apm.2018.07.044

    Article  MathSciNet  MATH  Google Scholar 

  47. Çelik E, Öztürk N, Arya Y (2021) Advancement of the search process of salp swarm algorithm for global optimization problems. Expert Syst Appl 182:115292. https://doi.org/10.1016/j.eswa.2021.115292

    Article  Google Scholar 

  48. Liu Y, Shi Y, Chen H, Heidari AA, Gui W, Wang M, Chen H, Li C (2021) Chaos-assisted multi-population salp swarm algorithms: framework and case studies. Expert Syst Appl 168:114369. https://doi.org/10.1016/j.eswa.2020.114369

    Article  Google Scholar 

  49. Salgotra R, Singh U, Singh G, Singh S, Gandomi AH (2021) Application of mutation operators to salp swarm algorithm. Expert Syst Appl 169:114368. https://doi.org/10.1016/j.eswa.2020.114368

    Article  Google Scholar 

  50. Zhang H, Wang Z, Chen W, Heidari AA, Wang M, Zhao X, Liang G, Chen H, Zhang X (2021) Ensemble mutation-driven salp swarm algorithm with restart mechanism: framework and fundamental analysis. Expert Syst Appl 165:113897. https://doi.org/10.1016/j.eswa.2020.113897

    Article  Google Scholar 

  51. Andersen V, Nival P (1986) A model of the population dynamics of salps in coastal waters of the Ligurian Sea. J Plankton Res 8:1091–1110. https://doi.org/10.1093/plankt/8.6.1091

    Article  Google Scholar 

  52. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  53. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579. https://doi.org/10.1016/j.amc.2006.11.033

    Article  MathSciNet  MATH  Google Scholar 

  54. Gao W-F, Huang L-L, Wang J, Liu S-Y, Qin C-D (2016) Enhanced artificial bee colony algorithm through differential evolution. Appl Soft Comput 48:137–150. https://doi.org/10.1016/j.asoc.2015.10.070

    Article  Google Scholar 

  55. Xiang W-L, Li Y-Z, Meng X-L, Zhang C-M, An M-Q (2017) A grey artificial bee colony algorithm. Appl Soft Comput 60:1–17. https://doi.org/10.1016/j.asoc.2017.06.015

    Article  Google Scholar 

  56. Tian D, Zhao X, Shi Z (2019) Chaotic particle swarm optimization with sigmoid-based acceleration coefficients for numerical function optimization. Swarm Evol Comput 51:100573. https://doi.org/10.1016/j.swevo.2019.100573

    Article  Google Scholar 

  57. Wang X, Wang Z, Weng J, Wen C, Chen H, Wang X (2018) A new effective machine learning framework for sepsis diagnosis. IEEE Access 6:48300–48310. https://doi.org/10.1109/ACCESS.2018.2867728

    Article  Google Scholar 

  58. Zhang Q, Chen H, Luo J, Xu Y, Wu C, Li C (2018) Chaos enhanced bacterial foraging optimization for global optimization. IEEE Access 6:64905–64919. https://doi.org/10.1109/ACCESS.2018.2876996

    Article  Google Scholar 

  59. Luo J, Chen H, Heidari AA, Xu Y, Zhang Q, Li C (2019) Multi-strategy boosted mutative whale-inspired optimization approaches. Appl Math Model 73:109–123. https://doi.org/10.1016/j.apm.2019.03.046

    Article  MathSciNet  MATH  Google Scholar 

  60. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: international conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06), pp 695–701. https://doi.org/10.1109/CIMCA.2005.1631345

  61. Chen H, Wang M, Zhao X (2020) A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Appl Math Comput 369:124872. https://doi.org/10.1016/j.amc.2019.124872

    Article  MathSciNet  MATH  Google Scholar 

  62. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  63. Jia D, Zheng G, Khurram KM (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181:3175–3187. https://doi.org/10.1016/j.ins.2011.03.018

    Article  Google Scholar 

  64. Civicioglu P, Besdok E, Gunen MA, Atasever UH (2020) Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms. Neural Comput Appl 32:3923–3937. https://doi.org/10.1007/s00521-018-3822-5

    Article  Google Scholar 

  65. Qais MH, Hasanien HM, Alghuwainem S (2019) Enhanced salp swarm algorithm: application to variable speed wind generators. Eng Appl Artif Intell 80:82–96. https://doi.org/10.1016/j.engappai.2019.01.011

    Article  Google Scholar 

  66. Frank AA (2010) UCI machine learning repository

  67. Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74. https://doi.org/10.1016/j.knosys.2011.07.001

    Article  Google Scholar 

  68. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  69. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  70. Yang, S., Yu, X., Ding, M., He, L., Cao, G., Zhao, L.,... Ren, N. (2021). Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural network. Water research (Oxford), 189, 116576. doi: 10.1016/j.watres.2020.116576

    Article  Google Scholar 

  71. Che, H., & Wang, J. (2021). A Two-Timescale Duplex Neurodynamic Approach to Mixed-Integer Optimization. IEEE transaction on neural networks and learning systems, 32(1), 36-48. doi: 10.1109/TNNLS.2020.2973760

    Article  MathSciNet  MATH  Google Scholar 

  72. Meng, Q., Lai, X., Yan, Z., Su, C., & Wu, M. (2021). Motion Planning and Adaptive Neural Tracking Control of an Uncertain Two-Link Rigid-Flexible Manipulator With Vibration Amplitude Constraint. IEEE transaction on neural networks and learning systems, PP, 1-15. doi: 10.1109/TNNLS.2021.3054611

    Article  Google Scholar 

  73. Zhang, M., Chen, Y., & Susilo, W. (2020). PPO-CPQ: A Privacy-Preserving Optimization of Clinical Pathway Query for E-Healthcare Systems. IEEE internet of things journal, 7(10), 10660-10672. doi: 10.1109/JIOT.2020.3007518

    Article  MathSciNet  MATH  Google Scholar 

  74. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part II: numerical results. Int J Numer Methods Eng 21:1601–1623. https://doi.org/10.1002/nme.1620210905

    Article  MATH  Google Scholar 

  75. Coello Coello CA, Mezura Montes E (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16:193–203. https://doi.org/10.1016/S1474-0346(02)00011-3

    Article  Google Scholar 

  76. Arora JS (2017) Introduction to optimum design, 4th edn. Academic Press, Boston, pp 601–680. https://doi.org/10.1016/B978-0-12-800806-5.00014-7

  77. Krohling RA, Coelho L (2006) Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems. IEEE Trans Syst Man Cybern Part B (Cybernetics) 36:1407–1416. https://doi.org/10.1109/TSMCB.2006.873185

    Article  Google Scholar 

  78. Zahara E, Kao Y-T (2009) Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst Appl 36:3880–3886. https://doi.org/10.1016/j.eswa.2008.02.039

    Article  Google Scholar 

  79. Li LJ, Huang ZB, Liu F, Wu QH (2007) A heuristic particle swarm optimizer for optimization of pin connected structures. Comput Struct 85:340–349. https://doi.org/10.1016/j.compstruc.2006.11.020

    Article  Google Scholar 

  80. Zhang HL, Cai ZN, Ye XJ, Wang MJ, Kuang FJ, Chen HL, Li CY, Li YP (2020) A multi-strategy enhanced salp swarm algorithm for global optimization. Eng Comput. https://doi.org/10.1007/s00366-020-01099-4

    Article  Google Scholar 

  81. Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic Krill Herd algorithm. Inf Sci 274:17–34. https://doi.org/10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  82. Coello-Coello CA, Becerra RL (2004) Efficient evolutionary optimization through the use of a cultural algorithm. Eng Optim 36:219–236. https://doi.org/10.1080/03052150410001647966

    Article  Google Scholar 

  83. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  84. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  85. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112:223–229. https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  86. Huang F-Z, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186:340–356. https://doi.org/10.1016/j.amc.2006.07.105

    Article  MathSciNet  MATH  Google Scholar 

  87. He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl Math Comput 186:1407–1422. https://doi.org/10.1016/j.amc.2006.07.134

    Article  MathSciNet  MATH  Google Scholar 

  88. Coelho L (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37:1676–1683. https://doi.org/10.1016/j.eswa.2009.06.044

    Article  Google Scholar 

  89. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7:386–396. https://doi.org/10.1109/TEVC.2003.814902

    Article  Google Scholar 

  90. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  91. Ray T, Saini P (2001) Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng Optim 33:735–748. https://doi.org/10.1080/03052150108940941

    Article  Google Scholar 

  92. Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inf Sci 178:3043–3074. https://doi.org/10.1016/j.ins.2008.02.014

    Article  Google Scholar 

  93. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl Soft Comput 10:629–640. https://doi.org/10.1016/j.asoc.2009.08.031

    Article  Google Scholar 

  94. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29:17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  95. Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40:3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  96. Adarsh BR, Raghunathan T, Jayabarathi T, Yang X-S (2016) Economic dispatch using chaotic bat algorithm. Energy 96:666–675. https://doi.org/10.1016/j.energy.2015.12.096

    Article  Google Scholar 

  97. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  98. Chen, S., Zhang, J., Meng, F., & Wang, D. (2021). A Markov Chain Position Prediction Model Based on Multidimensional Correction. Complexity (New York, N.Y.), 2021. https://doi.org/10.1155/2021/6677132

  99. He, Y., Dai, L., & Zhang, H. (2020). Multi-Branch Deep Residual Learning for Clustering and Beamforming in User-Centric Network. IEEE communications letters, 24(10), 2221-2225. https://doi.org/10.1109/LCOMM.2020.3005947

  100. Wu, X., Zheng, W., Chen, X., Zhao, Y., Yu, T., & Mu, D. (2021). Improving high-impact bug report prediction with combination of interactive machine learning and active learning. Information and Software Technology, 133, 106530.

  101. Wu, Z., Cao, J., Wang, Y., Wang, Y., Zhang, L., & Wu, J. (2018). hPSD: a hybrid PU-learning-based spammer detection model for product reviews. IEEE transactions on cybernetics, 50(4), 1595-1606.

  102. Wang, G. G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural computing and applications, 31(7), 1995-2014.

    Article  Google Scholar 

  103. Wang, G. G., Deb, S., & Coelho, L. D. S. (2018). Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. International journal of bio-inspired computation, 12(1), 1-22.

    Article  Google Scholar 

  104. Wang, G. G., Deb, S., & Coelho, L. D. S. (2015, December). Elephant herding optimization. In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 1-5). IEEE. doi: 10.1109/ISCBI.2015.8

  105. Wang, G. G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151-164.

    Article  Google Scholar 

  106. Liu, X. F., Zhan, Z. H., Lin, Y., Chen, W. N., Gong, Y. J., Gu, T. L., ... & Zhang, J. (2018). Historical and heuristic-based adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(12), 2623-2635.

  107. Zhao, H., Zhan, Z. H., Lin, Y., Chen, X., Luo, X. N., Zhang, J., ... & Zhang, J. (2019). Local binary pattern-based adaptive differential evolution for multimodal optimization problems. IEEE transactions on cybernetics, 50(7), 3343-3357.

  108. Zhan, Z. H., Wang, Z. J., Jin, H., & Zhang, J. (2019). Adaptive distributed differential evolution. IEEE transactions on cybernetics, 50(11), 4633-4647.

  109. Zhan, Z. H., Liu, X. F., Zhang, H., Yu, Z., Weng, J., Li, Y., ... & Zhang, J. (2016). Cloudde: A heterogeneous differential evolution algorithm and its distributed cloud version. IEEE Transactions on Parallel and Distributed Systems, 28(3), 704-716.

  110. Liu, X. F., Zhan, Z. H., & Zhang, J. (2021) Resource-Aware Distributed Differential Evolution for Training Expensive Neural-Network-Based Controller in Power Electronic Circuit. IEEE Transactions on Neural Networks and Learning Systems 1-11 10.1109/TNNLS.2021.3075205

  111. Chen, Z. G., Zhan, Z. H., Wang, H., & Zhang, J. (2019). Distributed individuals for multiple peaks: A novel differential evolution for multimodal optimization problems. IEEE Transactions on Evolutionary Computation, 24(4), 708-719.

  112. Chen, H., Li, S., Heidari, A. A., Wang, P., Li, J., Yang, Y., ... & Huang, C. (2020). Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines. Expert Systems with Applications, 142, 112999.

    Article  Google Scholar 

  113. Chen, H., Yang, C., Heidari, A. A., & Zhao, X. (2020). An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Systems with Applications, 154, 113018.

    Article  Google Scholar 

  114. Zhang, H., Heidari, A. A., Wang, M., Zhang, L., Chen, H., & Li, C. (2020). Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules. Energy Conversion and Management, 211, 112764.

    Article  Google Scholar 

  115. Ridha, H. M., Heidari, A. A., Wang, M., & Chen, H. (2020). Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Conversion and Management, 209, 112660.

    Article  Google Scholar 

  116. Chen, H., Jiao, S., Wang, M., Heidari, A. A., & Zhao, X. (2020). Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. Journal of Cleaner Production, 244, 118778.

    Article  Google Scholar 

  117. Chen, H., Heidari, A. A., Chen, H., Wang, M., Pan, Z., & Gandomi, A. H. (2020). Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. Future Generation Computer Systems, 111, 175-198.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the college-enterprise cooperation project of the domestic visiting engineer of colleges (FG2020077), Zhejiang, China, General research project of Zhejiang Provincial Education Department (Y201942618), Zhejiang, China, the National Natural Science Foundation of China (62076185, U1809209), the Beijing Natural Science Foundation (L182015), Zhejiang Provincial Natural Science Foundation of China (LY21F020030), Wenzhou Science & Technology Bureau (2018ZG016). We acknowledge comments of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxi Liang, Huiling Chen or Zhifang Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Tables 19, 20, 21, 22, 23, and 24.

Table 19 The comparison of the statistical results obtained by all the algorithms for IEEE CEC2014 benchmark set at D = 30
Table 20 The comparison of the statistical results obtained by all the algorithms for IEEE CEC2014 benchmark set at D = 50
Table 21 The comparison of the statistical results obtained by all the algorithms for IEEE CEC2014 benchmark set at D = 100
Table 22 The statistics results of all the methods on the fitness value
Table 23 The statistics results of all the methods on the error value
Table 24 The statistics results of all the methods on the feature number

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, T., Ye, X. et al. Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems. Engineering with Computers 39, 1735–1769 (2023). https://doi.org/10.1007/s00366-021-01545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01545-x

Keywords