Skip to main content
Log in

A global optimizer inspired from the survival strategies of flying foxes

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The aim of the current paper is to introduce a global optimization algorithm, inspired from the survival strategies of flying foxes during a heatwave, called as Flying Foxes Optimization (FFO). The proposed method exploits a Fuzzy Logic (FL) technique to determine the parameters individually for each solution, thus resulting in a parameters-free optimization algorithm. To evaluate FFO, 56 benchmark functions, including the CEC2017 test function suite and three real-world engineering problems, are employed and its performance is compared to those of state-of-the-art metaheuristics, when it comes to global optimization. The comparison results reveal that the proposed FFO optimizer constitutes a powerful attractive alternative for global optimization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tharwat A, Schenck W (2021) A conceptual and practical comparison of PSO-style optimization algorithms. Expert Syst Appl 167:114430. https://doi.org/10.1016/j.eswa.2020.114430

    Article  Google Scholar 

  2. Xing B, Gao W-J (2014) Innovative computational intelligence: a rough guide to 134 clever algorithms. In: Intelligent systems reference library, pp 3–17

  3. Mortazavi A (2021) Bayesian interactive search algorithm: a new probabilistic swarm intelligence tested on mathematical and structural optimization problems. Adv Eng Softw 155:102994. https://doi.org/10.1016/j.advengsoft.2021.102994

    Article  Google Scholar 

  4. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New York, pp 39–43

  5. Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, London

    Google Scholar 

  6. Pham DT, Ghanbarzadeh A, Koç E et al (2006) The Bees Algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems—2nd I*PROMS Virtual International Conference, pp 454–459

  7. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1:355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003

    Article  Google Scholar 

  8. Yang X-S, Deb S (2009) Cuckoo Search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214

  9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007

    Article  Google Scholar 

  10. Mirjalili S, Lewis A (2016) The Whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  11. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  12. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization. Springer, Berlin, pp 65–74

    Chapter  Google Scholar 

  13. Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Company Inc., New York

    MATH  Google Scholar 

  14. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao J, Gao Z-M (2020) The improved mayfly optimization algorithm with Chebyshev map. J Phys Conf Ser 1684:012075. https://doi.org/10.1088/1742-6596/1684/1/012075

    Article  Google Scholar 

  16. Kallioras NA, Lagaros ND, Avtzis DN (2018) Pity beetle algorithm—a new metaheuristic inspired by the behavior of bark beetles. Adv Eng Softw 121:147–166. https://doi.org/10.1016/j.advengsoft.2018.04.007

    Article  Google Scholar 

  17. Yildiz BS, Pholdee N, Bureerat S et al (2021) Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01368-w

    Article  Google Scholar 

  18. Le CN, Tran NT, Dao TP (2021) A hybrid approach of density-based topology, multilayer perceptron, and water cycle-moth flame algorithm for multi-stage optimal design of a flexure mechanism. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01417-4

    Article  Google Scholar 

  19. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. In: IEEE transactions on evolutionary computation, pp 67–82

  20. Tejani GG, Savsani VJ, Bureerat S et al (2018) Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms. Eng Comput 35:499–517. https://doi.org/10.1007/S00366-018-0612-8

    Article  Google Scholar 

  21. Abedinia O, Amjady N, Ghasemi A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21:97–116. https://doi.org/10.1002/cplx.21634

    Article  MathSciNet  Google Scholar 

  22. Aghay Kaboli SH, Selvaraj J, Rahim NA (2017) Rain-fall optimization algorithm: a population based algorithm for solving constrained optimization problems. J Comput Sci 19:31–42. https://doi.org/10.1016/j.jocs.2016.12.010

    Article  Google Scholar 

  23. Czerniak JM, Zarzycki H (2017) Artificial Acari Optimization as a new strategy for global optimization of multimodal functions. J Comput Sci 22:209–227. https://doi.org/10.1016/j.jocs.2017.05.028

    Article  Google Scholar 

  24. Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Des Eng 3:226–249. https://doi.org/10.1016/J.JCDE.2016.02.003

    Article  Google Scholar 

  25. Jahani E, Chizari M (2018) Tackling global optimization problems with a novel algorithm—Mouth Brooding Fish algorithm. Appl Soft Comput 62:987–1002. https://doi.org/10.1016/J.ASOC.2017.09.035

    Article  Google Scholar 

  26. Cuevas E, Gálvez J, Avila K et al (2020) A new metaheuristic approach based on agent systems principles. J Comput Sci 47:101244. https://doi.org/10.1016/j.jocs.2020.101244

    Article  MathSciNet  Google Scholar 

  27. Alsattar HA, Zaidan AA, Zaidan BB (2019) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev. https://doi.org/10.1007/s10462-019-09732-5

    Article  Google Scholar 

  28. Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  29. Hayyolalam V, Pourhaji Kazem AA (2020) Black Widow Optimization Algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2019.103249

    Article  Google Scholar 

  30. Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng 145:106559. https://doi.org/10.1016/j.cie.2020.106559

    Article  Google Scholar 

  31. Emami H (2021) Hazelnut tree search algorithm: a nature-inspired method for solving numerical and engineering problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01460-1

    Article  Google Scholar 

  32. Naruei I, Keynia F (2021) Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01438-z

    Article  Google Scholar 

  33. Liu Z, Jiang P, Wang J, Zhang L (2021) Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of Mayfly Optimization algorithm. Expert Syst Appl 177:114974. https://doi.org/10.1016/j.eswa.2021.114974

    Article  Google Scholar 

  34. Kumar S, Tejani GG, Mirjalili S (2018) Modified symbiotic organisms search for structural optimization. Eng Comput 35:1269–1296. https://doi.org/10.1007/S00366-018-0662-Y

    Article  Google Scholar 

  35. Kumar S, Tejani GG, Pholdee N, Bureerat S (2021) Multi-objective passing vehicle search algorithm for structure optimization. Expert Syst Appl 169:114511. https://doi.org/10.1016/J.ESWA.2020.114511

    Article  Google Scholar 

  36. Kumar S, Tejani GG, Pholdee N, Bureerat S (2021) Multiobjecitve structural optimization using improved heat transfer search. Knowl-Based Syst 219:106811. https://doi.org/10.1016/J.KNOSYS.2021.106811

    Article  Google Scholar 

  37. Luiz Junho Pereira J, Brendon Francisco M, Aparecida Diniz C et al (2020) Lichtenberg algorithm: a novel hybrid PHYSICS-based meta-heuristic for global optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114522

    Article  Google Scholar 

  38. Bhattacharyya T, Chatterjee B, Singh PK et al (2020) Mayfly in harmony: a new hybrid meta-heuristic feature selection algorithm. IEEE Access. https://doi.org/10.1109/access.2020.3031718

    Article  Google Scholar 

  39. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  40. Nobile MS, Cazzaniga P, Besozzi D et al (2018) Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol Comput 39:70–85. https://doi.org/10.1016/j.swevo.2017.09.001

    Article  Google Scholar 

  41. Tsafarakis S, Zervoudakis K, Andronikidis A, Altsitsiadis E (2020) Fuzzy self-tuning differential evolution for optimal product line design. Eur J Oper Res 287:1161–1169. https://doi.org/10.1016/j.ejor.2020.05.018

    Article  MathSciNet  MATH  Google Scholar 

  42. Aziz SA, Clements GR, Giam X et al (2017) Coexistence and conflict between the island Flying fox (Pteropus hypomelanus) and humans on Tioman Island, Peninsular Malaysia. Hum Ecol 45:377–389. https://doi.org/10.1007/s10745-017-9905-6

    Article  Google Scholar 

  43. Almeida FC, Giannini NP, Simmons NB, Helgen KM (2014) Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Mol Phylogenet Evol 77:83–95. https://doi.org/10.1016/j.ympev.2014.03.009

    Article  Google Scholar 

  44. Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc B Biol Sci 275:419–425. https://doi.org/10.1098/rspb.2007.1385

    Article  Google Scholar 

  45. Daly N (2020) Flying foxes are dying en masse in Australia’s extreme heat. https://www.nationalgeographic.com/animals/article/flying-foxes-are-dying-en-masse-in-australias-extreme-heat

  46. Haupt RL, Haupt SE (2004) The Continuous genetic algorithm. In: Haupt RL, Haupt SE (eds) Practical genetic algorithms, 2nd edn. Wiley, Hoboken, pp 51–66

    MATH  Google Scholar 

  47. Huang C, Li Y, Yao X (2019) A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans Evol Comput. https://doi.org/10.1109/tevc.2019.2921598

    Article  Google Scholar 

  48. Tatsis VA, Parsopoulos KE (2019) Dynamic parameter adaptation in metaheuristics using gradient approximation and line search. Appl Soft Comput J 74:368–384. https://doi.org/10.1016/j.asoc.2018.09.034

    Article  Google Scholar 

  49. Sugeno M (1985) Industrial applications of fuzzy control. Elsevier, North-Holland

    MATH  Google Scholar 

  50. Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4:150–194. https://doi.org/10.1504/IJMMNO.2013.055204

    Article  MATH  Google Scholar 

  51. Zong Woo Geem ZW, Joong Hoon Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  52. Dinno A (2015) Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J Promot Commun Stat Stata 15:292–300. https://doi.org/10.1177/1536867X1501500117

    Article  Google Scholar 

  53. Fan Z, Fang Y, Li W et al (2018) LSHADE44 with an improved constraint-handling method for solving constrained single-objective optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8

  54. Johnson SM (1954) Optimal two- and three-stage production schedules with setup times included. Nav Res Logist Q. https://doi.org/10.1002/nav.3800010110

    Article  Google Scholar 

  55. Morton TE, Pentico DW (1993) Heuristic scheduling systems: with applications to production systems and project management. Wiley, Hoboken

    Google Scholar 

  56. Komaki GM, Kayvanfar V (2015) Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. J Comput Sci 8:109–120. https://doi.org/10.1016/j.jocs.2015.03.011

    Article  Google Scholar 

  57. da Silva TG, Queiroga E, Ochi LS et al (2019) A hybrid metaheuristic for the minimum labeling spanning tree problem. Eur J Oper Res 274:22–34. https://doi.org/10.1016/j.ejor.2018.09.044

    Article  MathSciNet  MATH  Google Scholar 

  58. Heris S (2020) Minimum Spanning Tree using PSO, ICA and FA. https://yarpiz.com/407/ypap116-minimum-spanning-tree. Accessed 12 Apr 2021

  59. Hosseini SM, Khaled AA, Jin M (2012) Solving Euclidean minimal spanning tree problem using a new meta-heuristic approach: imperialist competitive ALGORITHM (ICA). In: IEEE International conference on industrial engineering and engineering management. IEEE Computer Society, pp 176–181

  60. Ghodratnama A, Tavakkoli-Moghaddam R, Baboli A (2013) Comparing three proposed meta-heuristics to solve a new p-hub location-allocation problem. IJE Trans C Asp 26:1043–1058. https://doi.org/10.5829/idosi.ije.2013.26.09c.11

    Article  Google Scholar 

  61. Heris S (2020) p-Hub location allocation problem. https://yarpiz.com/383/ypap110-hub-location-allocation. Accessed 13 Apr 2021

  62. Mokhtarzadeh M, Tavakkoli-Moghaddam R, Triki C, Rahimi Y (2021) A hybrid of clustering and meta-heuristic algorithms to solve a p-mobile hub location–allocation problem with the depreciation cost of hub facilities. Eng Appl Artif Intell 98:104121. https://doi.org/10.1016/j.engappai.2020.104121

    Article  Google Scholar 

  63. Sarvari PA, Yeni FB, Cevikcan E (2018) Hub location allocation problems and solution algorithms. In: Yilmaz OF, Tufekci S (eds) Handbook of research on applied optimization methodologies in manufacturing systems, 1st ed. IGI Global, pp 77–106

  64. Katebi J, Shoaei-parchin M, Shariati M et al (2020) Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng Comput 36:1539–1558. https://doi.org/10.1007/S00366-019-00780-7

    Article  Google Scholar 

  65. Kumar Y, Kaur A (2021) Variants of bat algorithm for solving partitional clustering problems. Eng Comput. https://doi.org/10.1007/S00366-021-01345-3

    Article  Google Scholar 

  66. Abdollahzadeh B, Gharehchopogh FS (2021) A multi-objective optimization algorithm for feature selection problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01369-9

    Article  Google Scholar 

  67. Tejani GG, Kumar S, Gandomi AH (2021) Multi-objective heat transfer search algorithm for truss optimization. Eng Comput 37:641–662. https://doi.org/10.1007/s00366-019-00846-6

    Article  Google Scholar 

  68. Kumar S, Tejani GG, Pholdee N, Bureerat S (2020) Multi-objective modified heat transfer search for truss optimization. Eng Comput 37:3439–3454. https://doi.org/10.1007/S00366-020-01010-1

    Article  Google Scholar 

  69. Kumar S, Tejani GG, Pholdee N et al (2021) Hybrid heat transfer search and passing vehicle search optimizer for multi-objective structural optimization. Knowl-Based Syst 212:106556. https://doi.org/10.1016/J.KNOSYS.2020.106556

    Article  Google Scholar 

Download references

Funding

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

figure i

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Zervoudakis.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

This Appendix presents the comparison of FFO’s performance with that of the rest state-of-the-art optimization approaches. Bold values correspond to the best located values.

f

Statistics

FFO

FA

HS

BA

IWO

BAT

CS

1

Min

6.36E−55

8.94E+00

2.73E+00

6.44E+02

6.65E−01

6.20E+02

6.68E+02

 

Average

5.45E−54

1.49E+01

3.51E+00

7.52E+02

1.01E+00

7.48E+02

7.60E+02

 

Median

3.40E−54

1.41E+01

3.41E+00

7.55E+02

9.56E−01

7.57E+02

7.67E+02

 

Max

2.03E−53

2.40E+01

4.83E+00

7.98E+02

1.67E+00

7.84E+02

8.17E+02

 

Std

5.70E−54

3.63E+00

5.66E−01

3.92E+01

2.57E−01

3.84E+01

3.83E+01

2

Min

2.99E+01

1.15E+03

1.13E+03

2.04E+06

1.88E+02

2.23E+06

1.57E+06

 

Average

5.69E+01

2.95E+03

1.60E+03

2.46E+06

9.60E+02

2.64E+06

2.46E+06

 

Median

4.47E+01

3.02E+03

1.66E+03

2.43E+06

7.57E+02

2.67E+06

2.54E+06

 

Max

1.02E+02

4.82E+03

2.24E+03

2.95E+06

2.61E+03

2.97E+06

2.91E+06

 

Std

2.26E+01

1.16E+03

3.43E+02

2.28E+05

7.00E+02

2.18E+05

3.07E+05

3

Min

1.83E−53

1.86E+02

4.11E+01

1.49E+04

1.00E+02

1.53E+04

1.43E+04

 

Average

1.57E−52

3.15E+02

5.89E+01

1.75E+04

2.81E+02

1.72E+04

1.68E+04

 

Median

6.42E−53

3.16E+02

5.83E+01

1.76E+04

2.56E+02

1.72E+04

1.69E+04

 

Max

1.40E−51

4.69E+02

7.96E+01

1.90E+04

4.46E+02

2.02E+04

1.91E+04

 

Std

2.75E−52

8.47E+01

1.04E+01

1.08E+03

1.08E+02

1.17E+03

1.54E+03

4

Min

9.58E−81

7.65E−10

8.03E−12

1.74E−06

2.13E−06

1.90E−06

2.03E−07

 

Average

1.90E−67

7.53E−08

8.27E−11

6.27E−03

1.21E−05

6.34E−03

8.50E−03

 

Median

1.22E−72

3.36E−08

5.71E−11

1.35E−03

9.76E−06

1.11E−03

3.27E−03

 

Max

4.38E−66

3.24E−07

3.11E−10

3.82E−02

4.46E−05

4.05E−02

9.57E−02

 

Std

8.66E−67

8.89E−08

8.74E−11

1.06E−02

9.02E−06

1.10E−02

2.09E−02

5

Min

− 1.00E+00

− 9.96E−01

− 9.84E−01

− 6.11E−01

− 8.90E−01

− 5.73E−01

− 6.11E−01

 

Average

− 1.00E+00

− 9.90E−01

− 9.77E−01

− 4.56E−01

− 8.37E−01

− 4.40E−01

− 4.33E−01

 

Median

− 1.00E+00

− 9.91E−01

− 9.76E−01

− 4.65E−01

− 8.39E−01

− 4.37E−01

− 4.23E−01

 

Max

− 1.00E+00

− 9.79E−01

− 9.71E−01

− 2.37E−01

− 7.85E−01

− 2.72E−01

− 2.69E−01

 

Std

0.00E+00

4.09E−03

3.18E−03

1.09E−01

3.15E−02

8.36E−02

1.10E−01

6

Min

5.63E−29

1.30E+02

4.98E+01

1.53E+03

2.23E+02

1.54E+03

1.54E+03

 

Average

1.63E−28

1.69E+02

6.56E+01

1.62E+03

2.88E+02

1.64E+03

1.65E+03

 

Median

1.62E−28

1.73E+02

6.41E+01

1.62E+03

2.77E+02

1.64E+03

1.64E+03

 

Max

3.31E−28

2.06E+02

8.45E+01

1.73E+03

3.75E+02

1.72E+03

1.75E+03

 

Std

7.74E−29

2.10E+01

8.52E+00

5.00E+01

4.23E+01

5.04E+01

4.88E+01

7

Min

5.42E+00

1.61E+01

2.10E+01

7.06E+01

3.50E+01

7.54E+01

7.42E+01

 

Average

1.22E+01

2.05E+01

2.32E+01

7.89E+01

4.69E+01

7.92E+01

7.94E+01

 

Median

1.34E+01

2.01E+01

2.32E+01

7.91E+01

4.69E+01

7.94E+01

8.00E+01

 

Max

1.75E+01

2.62E+01

2.54E+01

8.28E+01

5.68E+01

8.17E+01

8.23E+01

 

Std

4.26E+00

2.32E+00

1.12E+00

2.73E+00

6.35E+00

1.71E+00

2.08E+00

8

Min

1.17E−27

2.78E+02

1.91E+01

1.36E+37

2.09E+09

6.08E+16

5.90E+39

 

Average

3.87E−27

3.35E+02

2.55E+01

3.19E+61

2.08E+26

3.21E+62

1.79E+61

 

Median

3.31E−27

3.45E+02

2.51E+01

1.61E+54

1.50E+16

3.62E+56

1.13E+54

 

Max

1.00E−26

3.96E+02

3.35E+01

4.37E+62

2.48E+27

4.16E+63

3.00E+62

 

Std

1.94E−27

3.02E+01

4.05E+00

1.02E+62

6.51E+26

1.02E+63

6.76E+61

9

Min

1.13E+01

1.89E+02

1.85E+02

5.56E+02

5.89E+02

5.86E+02

6.19E+02

 

Average

2.23E+01

2.47E+02

2.38E+02

8.18E+02

8.12E+02

8.44E+02

8.02E+02

 

Median

2.11E+01

2.48E+02

2.40E+02

8.35E+02

7.87E+02

8.69E+02

8.00E+02

 

Max

3.59E+01

2.99E+02

3.12E+02

1.02E+03

1.19E+03

9.69E+02

9.65E+02

 

Std

7.52E+00

2.94E+01

2.97E+01

1.17E+02

1.58E+02

1.03E+02

9.82E+01

10

Min

1.69E+01

1.24E+02

1.70E+01

2.78E+02

1.68E+02

2.99E+02

2.99E+02

 

Average

4.37E+01

1.79E+02

2.17E+01

3.27E+02

2.29E+02

3.32E+02

3.36E+02

 

Median

4.28E+01

1.71E+02

2.17E+01

3.26E+02

2.21E+02

3.30E+02

3.43E+02

 

Max

7.86E+01

2.72E+02

2.74E+01

3.97E+02

3.24E+02

3.75E+02

3.61E+02

 

Std

1.40E+01

4.54E+01

3.00E+00

2.87E+01

3.88E+01

1.91E+01

1.79E+01

11

Min

0.00E+00

0.00E+00

9.01E−09

1.19E−08

3.08E−06

9.33E−07

2.37E−06

 

Average

0.00E+00

5.33E−16

2.18E−07

1.66E−02

3.65E−05

1.16E−02

2.61E−02

 

Median

0.00E+00

0.00E+00

2.07E−07

2.78E−03

3.17E−05

2.20E−03

7.51E−03

 

Max

0.00E+00

3.55E−15

5.40E−07

5.72E−02

1.00E−04

5.93E−02

9.28E−02

 

Std

0.00E+00

1.30E−15

1.27E−07

2.30E−02

2.54E−05

1.74E−02

3.25E−02

12

Min

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

 

Average

0.00E+00

0.00E+00

9.86E−04

3.40E−05

2.15E−08

5.46E−05

8.01E−05

 

Median

0.00E+00

0.00E+00

2.22E−16

8.38E−07

7.27E−15

1.36E−08

1.37E−06

 

Max

0.00E+00

0.00E+00

9.86E−03

2.20E−04

3.32E−07

3.73E−04

4.43E−04

 

Std

0.00E+00

0.00E+00

3.04E−03

6.16E−05

7.59E−08

1.08E−04

1.41E−04

13

Min

0.00E+00

4.42E+01

5.17E−01

2.48E+01

1.12E+01

1.93E+01

2.36E+01

 

Average

5.08E−14

5.18E+01

7.40E−01

3.24E+01

1.69E+01

3.24E+01

3.20E+01

 

Median

5.41E−14

5.20E+01

6.87E−01

3.19E+01

1.63E+01

3.26E+01

3.20E+01

 

Max

6.59E−14

6.24E+01

1.09E+00

3.99E+01

2.20E+01

4.33E+01

4.02E+01

 

Std

1.25E−14

5.42E+00

1.58E−01

4.09E+00

2.93E+00

5.93E+00

4.81E+00

14

Min

4.00E−01

4.00E+00

3.20E+00

2.82E+01

7.11E+00

2.78E+01

2.67E+01

 

Average

4.72E−01

4.95E+00

3.73E+00

2.94E+01

7.96E+00

2.97E+01

2.94E+01

 

Median

5.00E−01

4.95E+00

3.73E+00

2.95E+01

7.91E+00

2.98E+01

2.96E+01

 

Max

6.00E−01

5.80E+00

4.60E+00

3.03E+01

8.82E+00

3.09E+01

3.09E+01

 

Std

5.34E−02

5.75E−01

4.19E−01

6.57E−01

3.96E−01

8.34E−01

1.11E+00

15

Min

5.98E−23

3.48E+07

2.51E+07

1.77E+11

3.89E+07

1.58E+11

1.52E+11

 

Average

9.00E−07

1.10E+08

3.92E+07

2.00E+11

9.02E+07

1.98E+11

2.01E+11

 

Median

1.71E−13

1.08E+08

3.94E+07

1.98E+11

8.62E+07

1.99E+11

2.02E+11

 

Max

2.03E−05

2.58E+08

5.53E+07

2.24E+11

1.62E+08

2.24E+11

2.28E+11

 

Std

4.00E−06

5.40E+07

8.46E+06

1.49E+10

3.03E+07

1.61E+10

1.86E+10

16

Min

− 1.96E+03

1.99E+07

1.29E+07

8.93E+10

2.00E+07

7.77E+10

7.54E+10

 

Average

− 1.93E+03

6.14E+07

2.22E+07

1.04E+11

3.15E+07

1.01E+11

1.03E+11

 

Median

− 1.94E+03

5.21E+07

2.01E+07

1.05E+11

3.02E+07

1.03E+11

1.06E+11

 

Max

− 1.86E+03

1.45E+08

3.52E+07

1.18E+11

4.37E+07

1.15E+11

1.18E+11

 

Std

2.94E+01

3.73E+07

6.58E+06

8.17E+09

6.65E+06

9.45E+09

1.15E+10

17

Min

1.97E−11

4.26E−02

3.21E−02

3.51E+15

6.06E+03

1.17E+15

1.45E+15

 

Average

7.20E−08

6.77E+00

1.34E−01

1.44E+17

1.51E+10

1.24E+17

3.22E+17

 

Median

3.50E−09

4.25E−01

1.17E−01

8.21E+16

3.15E+07

3.05E+16

7.71E+16

 

Max

1.33E−06

1.17E+02

3.57E−01

7.65E+17

2.99E+11

1.17E+18

2.11E+18

 

Std

2.63E−07

2.61E+01

8.34E−02

1.84E+17

6.67E+10

2.72E+17

6.05E+17

18

Min

7.88E−03

6.43E−02

1.88E−01

8.56E+00

1.09E+00

9.84E+00

7.49E+00

 

Average

1.44E−02

1.55E−01

2.41E−01

2.79E+01

1.95E+00

2.44E+01

2.54E+01

 

Median

1.37E−02

1.39E−01

2.31E−01

1.97E+01

1.85E+00

2.03E+01

1.99E+01

 

Max

2.44E−02

3.06E−01

3.04E−01

9.58E+01

3.36E+00

6.69E+01

5.99E+01

 

Std

3.69E−03

5.88E−02

3.25E−02

2.19E+01

6.32E−01

1.36E+01

1.46E+01

19

Min

0.00E+00

1.32E−56

2.79E−15

8.92E−71

7.39E−11

2.12E−70

4.31E−70

 

Average

0.00E+00

3.52E−55

3.04E−13

5.20E−69

3.42E−09

9.46E−69

8.69E−69

 

Median

0.00E+00

2.91E−55

1.33E−13

1.82E−69

2.87E−09

5.90E−69

4.19E−69

 

Max

0.00E+00

8.92E−55

1.44E−12

2.70E−68

1.22E−08

4.12E−68

4.24E−68

 

Std

0.00E+00

2.62E−55

4.08E−13

7.18E−69

3.10E−09

1.11E−68

1.07E−68

20

Min

0.00E+00

0.00E+00

6.90E−14

5.75E−09

8.47E−12

4.16E−10

1.63E−09

 

Average

0.00E+00

0.00E+00

5.35E−12

7.23E−06

6.56E−10

4.12E−06

3.77E−06

 

Median

0.00E+00

0.00E+00

6.09E−12

7.17E−07

4.39E−10

2.91E−07

1.67E−06

 

Max

0.00E+00

0.00E+00

1.48E−11

5.08E−05

3.45E−09

3.29E−05

2.78E−05

 

Std

0.00E+00

0.00E+00

4.14E−12

1.56E−05

8.42E−10

8.39E−06

6.28E−06

21

Min

0.00E+00

0.00E+00

4.63E−13

1.57E−05

2.68E−10

1.98E−05

1.97E−05

 

Average

4.49E−27

2.84E−02

1.37E−10

2.11E−03

1.05E−08

2.62E−03

1.50E−03

 

Median

0.00E+00

8.40E−03

9.98E−11

1.29E−03

6.08E−09

8.65E−04

3.67E−04

 

Max

1.49E−25

1.34E−01

5.87E−10

1.31E−02

7.05E−08

1.16E−02

9.15E−03

 

Std

2.32E−26

4.30E−02

1.49E−10

2.87E−03

1.57E−08

3.55E−03

2.21E−03

22

Min

0.00E+00

0.00E+00

1.72E−15

0.00E+00

1.81E−10

0.00E+00

0.00E+00

 

Average

0.00E+00

0.00E+00

1.91E−13

3.27E−02

3.42E−09

3.27E−02

6.55E−02

 

Median

0.00E+00

0.00E+00

8.36E−14

0.00E+00

1.58E−09

0.00E+00

0.00E+00

 

Max

0.00E+00

0.00E+00

1.41E−12

2.18E−01

2.73E−08

2.18E−01

2.18E−01

 

Std

0.00E+00

0.00E+00

3.30E−13

8.00E−02

5.95E−09

8.00E−02

1.03E−01

23

Min

− 1.00E+00

− 1.00E+00

− 1.00E+00

− 1.00E+00

− 1.00E+00

− 1.00E+00

− 1.00E+00

 

Average

− 1.00E+00

− 1.00E+00

− 1.00E+00

− 8.68E−01

− 1.00E+00

− 8.44E−01

− 9.25E−01

 

Median

− 1.00E+00

− 1.00E+00

− 1.00E+00

− 9.28E−01

− 1.00E+00

− 1.00E+00

− 9.96E−01

 

Max

− 1.00E+00

− 1.00E+00

− 1.00E+00

− 3.86E−01

− 1.00E+00

− 2.39E−01

− 3.64E−01

 

Std

0.00E+00

1.52E−14

1.50E−14

1.75E−01

2.49E−10

2.64E−01

1.54E−01

24

Min

0.00E+00

2.28E−57

4.77E−16

3.84E−71

2.59E−12

1.08E−72

1.68E−71

 

Average

0.00E+00

2.83E−56

2.85E−14

8.03E−70

1.53E−10

7.89E−70

6.76E−70

 

Median

0.00E+00

2.24E−56

1.40E−14

4.32E−70

1.05E−10

4.08E−70

2.47E−70

 

Max

0.00E+00

7.12E−56

2.04E−13

3.99E−69

7.06E−10

3.52E−69

3.12E−69

 

Std

0.00E+00

2.14E−56

4.79E−14

1.02E−69

1.65E−10

1.00E−69

9.02E−70

25

Min

4.44E−07

6.17E−02

1.06E−06

5.43E−03

1.27E−06

1.27E−02

7.83E−04

 

Average

2.29E−03

1.39E+00

2.31E−02

1.92E+00

2.01E−02

8.24E−01

1.66E+00

 

Median

8.54E−05

8.35E−01

2.30E−02

7.11E−01

4.92E−03

4.27E−01

7.83E−01

 

Max

3.41E−02

7.87E+00

6.88E−02

6.46E+00

7.77E−02

3.98E+00

5.92E+00

 

Std

6.36E−03

1.93E+00

2.14E−02

2.12E+00

2.59E−02

1.10E+00

1.94E+00

Appendix Β

The aim of this Appendix is to provide a simplified Matlab code of the proposed FFO.

figure c
figure d
figure e
figure f
figure g
figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zervoudakis, K., Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Engineering with Computers 39, 1583–1616 (2023). https://doi.org/10.1007/s00366-021-01554-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01554-w

Keywords

Navigation