Skip to main content
Log in

Hexahedral mesh adaptation based on posterior-error estimation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Mesh adaptation is widely used in numerical simulations to improve the accuracy and efficiency of the solutions. This paper introduces a physics-based hexahedral mesh adaptation method based on posterior-error estimation. First, we determine the regions to be refined based on the Riemannian metric field, which is calculated according to the analysis result on the coarse hex mesh. Second, the quad sets to be inserted by sheet inflation operations are determined based on the graph cuts algorithm, which considers the topological quality and the adaptation requirements. Finally, the mesh quality is improved with a size-preserving mesh optimization method that considers both the element shape and mesh size. Experimental results for the mechanical parts verified the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Frey P-J, Alauzet F (2005) Anisotropic mesh adaptation for CFFD computations. Comput Methods Appl Mech Eng 194(48–49):5068–5082

    Article  MATH  Google Scholar 

  2. Li X, Shephard MS, Beall MW (2005) 3D anisotropic mesh adaptation by mesh modification. Comput Methods Appl Mech Eng 194(48–49):4915–4950

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang YJ (2018) Geometric modeling and mesh generation from scanned images. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  4. Yu Y, Liu JG, Zhang YJ (2021) Hexdom: polycube-based hexahedral-dominant mesh generation. arXiv:2103.04183

  5. Yu Y, Wei X, Li A, Liu JG, He J, Zhang YJ (2020) Hexgen and hex2spline: polycube-based hexahedral mesh generation and spline modeling for isogeometric analysis applications in ls-dyna. arXiv:2011.14213

  6. Hu K, Zhang YJ, Xu G (2018) CVT-based 3D image segmentation and quality improvement of tetrahedral/hexahedral meshes using anisotropic Giaquinta-Hildebrandt operator. Comput Methods Biomech Biomed Eng Imaging Vis 6(3):331–342

    Article  Google Scholar 

  7. Hu K, Zhang YJ (2016) Centroidal Voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation. Comput Methods Appl Mech Eng 305:405–421

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang Y, Liang X, Xu G (2013) A robust 2-refinement algorithm in octree or rhombic dodecahedral tree based all-hexahedral mesh generation. Comput Methods Appl Mech Eng 256:88–100

    Article  MathSciNet  MATH  Google Scholar 

  9. Qian J, Zhang Y (2012) Automatic unstructured all-hexahedral mesh generation from b-reps for non-manifold cad assemblies. Eng Comput 28(4):345–359

    Article  Google Scholar 

  10. Zhang Y, Bajaj C (2006) Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput Methods Appl Mech Eng 195(9–12):942–960

    Article  MATH  Google Scholar 

  11. Xu K, Gao X, Deng Z, Chen G (2017) Hexahedral meshing with varying element sizes. In: Computer graphics forum, Wiley Online Library, vol 36, pp 540–553

  12. Quadros WR, Shimada K, Owen SJ (2004) Skeleton-based computational method for the generation of a 3D finite element mesh sizing function. Eng Comput 20(3):249–264

    Article  Google Scholar 

  13. Tchon K-F, Khachan M, Guibault F, Camarero R (2005) Three-dimensional anisotropic geometric metrics based on local domain curvature and thickness. Comput Aided Des 37(2):173–187

    Article  Google Scholar 

  14. Löhner R, Parikh P (1988) Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids 8(10):1135–1149

    Article  MATH  Google Scholar 

  15. Cunha A, Canann S, Saigal S (1997) Automatic boundary sizing for 2D and 3D meshes. ASME Appl Mech Div Publ AMD 220:65–72

    Google Scholar 

  16. Owen SJ, Saigal S (1997) Neighborhood-based element sizing control for finite element surface meshing. In: 6th international meshing roundtable Proceedings, pp 143–154

  17. Pirzadeh S (1993) Structured background grids for generation of unstructured grids by advancing-front method. AIAA J 31(2):257–265

    Article  Google Scholar 

  18. Yerry MA, Shephard MS (1983) A modified quadtree approach to finite element mesh generation. IEEE Comput Graphics Appl 3(1):39–46

    Article  Google Scholar 

  19. Zhu J, Blacker TD, Smith R (2002) Background overlay grid size functions. In: IMR, pp 65–73

  20. Quadros WR, Vyas V, Brewer M, Owen SJ, Shimada K (2010) A computational framework for automating generation of sizing function in assembly meshing via disconnected skeletons. Eng Comput 26(3):231–247

    Article  Google Scholar 

  21. Zienkiewicz OC, Zhu JZ, Gong NG (1989) Effective and practical h-p-version adaptive analysis procedures for the finite element method. Int J Numer Methods Eng 28(4):879–891

    Article  MathSciNet  Google Scholar 

  22. Verfurth R (1984) A combined conjugate gradient-multi-grid algorithm for the numerical solution of the stokes problem. IMA J Numer Anal 4(4):441–455

    Article  MathSciNet  MATH  Google Scholar 

  23. Eriksson K, Johnson C (1995) Adaptive finite element methods for parabolic problems IV: nonlinear problems. SIAM J Numer Anal 32(6):1729–1749

    Article  MathSciNet  MATH  Google Scholar 

  24. Eriksson K, Johnson C (1995) Adaptive finite element methods for parabolic problems V: long-time integration. SIAM J Numer Anal 32(6):1750–1763

    Article  MathSciNet  MATH  Google Scholar 

  25. Zienkiewicz OC, Zhu JZ (1992) The super convergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Numer Methods Eng 33(7):1331–1364

    Article  MATH  Google Scholar 

  26. Zienkiewicz OC, Zhu JZ (1992) The super convergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382

    Article  MATH  Google Scholar 

  27. Schneiders R, Schindler R, Weiler F (1996) Octree-based generation of hexahedral element meshes. In: Proceedings of the 5th international meshing roundtable. Citeseer

  28. Zhang H, Zhao G (2007) Adaptive hexahedral mesh generation based on local domain curvature and thickness using a modified grid-based method. Finite Elem Anal Des 43(9):691–704

    Article  Google Scholar 

  29. Borden MJ, Benzley SE, Mitchell SA, White DR, Meyers RJ (2000) The cleave and fill tool: an all-hexahedral refinement algorithm for swept meshes. In: IMR, pp 69–76

  30. Tchon K-F, Dompierre J, Scamarero R (2004) Automated refinement of conformal quadrilateral and hexahedral meshes. Int J Numer Methods Eng 59(12):1539–1562

    Article  MATH  Google Scholar 

  31. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  32. Wang R, Ding M, Wu H, Zheng Z, Gao S (2020) Optimization design method of complex sheet insertion operation of hexahedral mesh. J Comput Aided Des Comput Graphics 32(5):846–856

    Google Scholar 

  33. Gao X, Panozzo D, Wang W, Deng Z, Chen G (2017) Robust structure simplification for hex re-meshing. ACM Trans Graph 36(6):1–13

    Google Scholar 

  34. Gao X, Shen H, Panozzo D (2019) Feature preserving octree-based hexahedral meshing. Computer graphics forum, vol 38

Download references

Acknowledgements

The authors are very grateful to the financial supports from NSF of China (61802211) and QiangJi Program (TC190A4DA/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Gao, S. & Wang, R. Hexahedral mesh adaptation based on posterior-error estimation. Engineering with Computers 38, 4337–4348 (2022). https://doi.org/10.1007/s00366-021-01581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01581-7

Keywords

Navigation