Skip to main content
Log in

Wave dispersion relations in laminated fiber-reinforced composite plates with surface-mounted piezoelectric materials

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study presents the dispersion relations for wave propagation in laminated fiber-reinforced composite plates coupled with the piezoelectric actuators at the top and bottom surfaces based on the Kirchhoff plate theory. Piezoelectric layers are poled in the transverse (thickness) direction to apply flexural action and a cosine distribution for the electric potential in the transverse direction is assumed to satisfy the closed (short)-circuit electrical boundary condition. The Maxwell static electricity equation is applied for the piezoelectric layers bonded on the surfaces of the host laminated composite plate. Based on the Kirchhoff plate theory, a linear relation between the non-dimensional wave phase velocity and the non-dimensional wavenumber is obtained which can present the effects of piezoelectricity, wavenumbers, laminate stacking sequence, and material properties of the host laminated plate on the wave dispersion relations. The main contribution of this study is proposing a new analytical approach to determine wave propagation characteristics in smart composite plates considering transverse polarization of piezoelectric materials. The results of this study indicate that the presence of piezoelectric actuators has a significant effect on the wave phase velocity variations within various wavenumbers as well as the effects of the laminate stacking sequence and the host plate material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Talebi H, Silani M, Bordas SPA et al (2014) A computational library for multiscale modeling of material failure. Comput Mech 53:1047–1071. https://doi.org/10.1007/s00466-013-0948-2

    Article  MathSciNet  Google Scholar 

  2. Msekh MA, Cuong NH, Zi G et al (2018) Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng Fract Mech 188:287–299. https://doi.org/10.1016/j.engfracmech.2017.08.002

    Article  Google Scholar 

  3. Arefi M, Zenkour AM (2017) Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model. J Intell Mater Syst Struct 28:2403–2413. https://doi.org/10.1177/1045389X17689930

    Article  Google Scholar 

  4. Wang M, Jiang C, Zhang S et al (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10:667–672. https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  5. Arefi M, Zenkour AM (2019) Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam. J Sandwich Struct Mater 21:1243–1270. https://doi.org/10.1177/1099636217714181

    Article  Google Scholar 

  6. Zhang J, Shaw AD, Wang C et al (2021) Aeroelastic model and analysis of an active camber morphing wing. Aerosp Sci Technol 111:106534. https://doi.org/10.1016/j.ast.2021.106534

    Article  Google Scholar 

  7. Lu C, Zhu R, Yu F et al (2021) Gear rotational speed sensor based on FeCoSiB/Pb(Zr, Ti)O3 magnetoelectric composite. Measurement 168:108409. https://doi.org/10.1016/j.measurement.2020.108409

    Article  Google Scholar 

  8. Zhou H, Xu C, Lu C et al (2021) Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing. Sens Actuators A 329:112789. https://doi.org/10.1016/j.sna.2021.112789

    Article  Google Scholar 

  9. Yu Y, Zhao Y, Qiao Y-L et al (2021) Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J Mater Sci Technol 84:10–15. https://doi.org/10.1016/j.jmst.2020.12.046

    Article  Google Scholar 

  10. Zhang Z, Yang F, Zhang H et al (2021) Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater Charact 171:110732. https://doi.org/10.1016/j.matchar.2020.110732

    Article  Google Scholar 

  11. Wang Q, Quek ST (2002) A Model for the Analysis of Beams with Embedded Piezoelectric Layers. J Intell Mater Syst Struct 13:61–70. https://doi.org/10.1177/1045389X02013001979

    Article  Google Scholar 

  12. Giurgiutiu V, Zagrai A, Jing Bao J (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1:41–61. https://doi.org/10.1177/147592170200100104

    Article  Google Scholar 

  13. Giurgiutiu V (2005) Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell Mater Syst Struct 16:291–305. https://doi.org/10.1177/1045389X05050106

    Article  Google Scholar 

  14. Vasques CMA, Rodrigues JD (2005) Coupled three-layered analysis of smart piezoelectric beams with different electric boundary conditions. Int J Numer Meth Eng 62:1488–1518. https://doi.org/10.1002/nme.1237

    Article  MATH  Google Scholar 

  15. Vasques CMA, Rodriques JD (2008) Numerical and experimental comparison of the adaptive feedforward control of vibration of a beam with hybrid active-passive damping treatments. J Intell Mater Syst Struct 19:805–813. https://doi.org/10.1177/1045389X07081095

    Article  Google Scholar 

  16. Wang Q, Quek ST (2012) Dispersion relations in piezoelectric coupled beams. AIAA Journal doi 10(2514/2):908

    Google Scholar 

  17. Vasques CMA (2012) Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes. Smart Mater Struct 21:125003. https://doi.org/10.1088/0964-1726/21/12/125003

    Article  Google Scholar 

  18. Quek ST, Wang Q (2000) On dispersion relations in piezoelectric coupled-plate structures. Smart Mater Struct 9:859. https://doi.org/10.1088/0964-1726/9/6/317

    Article  Google Scholar 

  19. Wang Q, Varadan VK (2002) Wave propagation in piezoelectric coupled plates by use of interdigital transducer: Part 1. Dispersion characteristics. Int J Solids Struct 39:1119–1130. https://doi.org/10.1016/S0020-7683(01)00243-8

    Article  MATH  Google Scholar 

  20. Wang Q (2002) SH wave propagation in piezoelectric coupled plates. IEEE Trans Ultrason Ferroelectr Freq Control 49:596–603. https://doi.org/10.1109/TUFFC.2002.1002458

    Article  Google Scholar 

  21. Jin J, Wang Q, Quek ST (2002) Lamb wave propagation in a metallic semi-infinite medium covered with piezoelectric layer. Int J Solids Struct 39:2547–2556. https://doi.org/10.1016/S0020-7683(02)00091-4

    Article  MATH  Google Scholar 

  22. Yelve NP, Mitra M, Mujumdar PM (2017) Detection of delamination in composite laminates using Lamb wave based nonlinear method. Compos Struct 159:257–266. https://doi.org/10.1016/j.compstruct.2016.09.073

    Article  Google Scholar 

  23. Yelve NP, Rode S, Das P, Khanolkar P (2019) Some new algorithms for locating a damage in thin plates using lamb waves. Eng Res Express 1:015027. https://doi.org/10.1088/2631-8695/ab3c17

    Article  Google Scholar 

  24. Migot A, Ethaib S, Giurgiutiu V (2021) Experimental investigation of the delamination severity in a composite plate using NDT and SHM techniques. In: Han J-H, Wang G, Shahab S (eds) Active and passive smart structures and integrated systems XV. SPIE, pp 84–97. https://doi.org/10.1117/12.2582568

  25. Rekatsinas CS, Chrysochoidis NA, Saravanos DA (2021) Investigation of critical delamination characteristics in composite plates combining cubic spline piezo-layerwise mechanics and time domain spectral finite elements. Wave Motion 106:102752. https://doi.org/10.1016/j.wavemoti.2021.102752

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang Q (2001) Wave propagation in a piezoelectric coupled cylindrical membrane shell. Int J Solids Struct 38:8207–8218. https://doi.org/10.1016/S0020-7683(01)00071-3

    Article  MATH  Google Scholar 

  27. Wang Q (2002) Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer. Int J Solids Struct 39:3023–3037. https://doi.org/10.1016/S0020-7683(02)00233-0

    Article  MATH  Google Scholar 

  28. Wang Q, Liew KM (2003) Analysis of wave propagation in piezoelectric coupled cylinder affected by transverse shear and rotary inertia. Int J Solids Struct 40:6653–6667. https://doi.org/10.1016/S0020-7683(03)00422-0

    Article  MATH  Google Scholar 

  29. Hasheminejad SM, Rabbani V, Alaei-Varnosfaderani M (2016) Active transient elasto-acoustic response damping of a thick-walled liquid-coupled piezolaminated cylindrical vessel. Mech Based Des Struct Mach 44:189–211. https://doi.org/10.1080/15397734.2015.1048461

    Article  Google Scholar 

  30. Hasheminejad SM, Rabbani V (2015) Active transient sound radiation control from a smart piezocomposite hollow cylinder. Arch Acoust 40:359–381. https://doi.org/10.1515/aoa-2015-0039

    Article  Google Scholar 

  31. Rabbani V, Bahari A, Hodaei M et al (2019) Three-dimensional free vibration analysis of triclinic piezoelectric hollow cylinder. Compos B Eng 158:352–363. https://doi.org/10.1016/j.compositesb.2018.09.033

    Article  Google Scholar 

  32. Rabbani V, Hodaei M, Deng X et al (2019) Sound transmission through a thick-walled FGM piezo-laminated cylindrical shell filled with and submerged in compressible fluids. Eng Struct 197:109323. https://doi.org/10.1016/j.engstruct.2019.109323

    Article  Google Scholar 

  33. Bisheh H, Wu N (2018) Wave propagation characteristics in a piezoelectric coupled laminated composite cylindrical shell by considering transverse shear effects and rotary inertia. Compos Struct 191:123–144. https://doi.org/10.1016/j.compstruct.2018.02.010

    Article  Google Scholar 

  34. Bisheh HKh, Wu N (2018) Analysis of wave propagation characteristics in piezoelectric cylindrical composite shells reinforced with carbon nanotubes. Int J Mech Sci 145:200–220. https://doi.org/10.1016/j.ijmecsci.2018.07.002

    Article  Google Scholar 

  35. Bisheh H, Wu N (2019) Wave propagation in piezoelectric cylindrical composite shells reinforced with angled and randomly oriented carbon nanotubes. Compos B Eng 160:10–30. https://doi.org/10.1016/j.compositesb.2018.10.001

    Article  Google Scholar 

  36. Bisheh H, Wu N (2019) Wave propagation in smart laminated composite cylindrical shells reinforced with carbon nanotubes in hygrothermal environments. Compos B Eng 162:219–241. https://doi.org/10.1016/j.compositesb.2018.10.064

    Article  Google Scholar 

  37. Bisheh H, Wu N (2019) On dispersion relations in smart laminated fiber-reinforced composite membranes considering different piezoelectric coupling effects. J Low Freq Noise Vib Active Control 38:487–509. https://doi.org/10.1177/1461348418821773

    Article  Google Scholar 

  38. Bisheh H, Wu N, Hui D (2019) Polarization effects on wave propagation characteristics of piezoelectric coupled laminated fiber-reinforced composite cylindrical shells. Int J Mech Sci 161–162:105028. https://doi.org/10.1016/j.ijmecsci.2019.105028

    Article  Google Scholar 

  39. Bisheh H, Rabczuk T, Wu N (2020) Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells. Compos B Eng. https://doi.org/10.1016/j.compositesb.2019.107739

    Article  Google Scholar 

  40. Bisheh H, Wu N, Rabczuk T (2020) Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments. Thin-Walled Struct 149:106500. https://doi.org/10.1016/j.tws.2019.106500

    Article  Google Scholar 

  41. Kheirollahi Nataj Bisheh H (2020) Structural dynamics of smart laminated composite cylindrical shells. University of Manitoba. URI: http://hdl.handle.net/1993/34761. Accessed 03 July 2021

  42. Bisheh H, Civalek Ö (2020) Vibration of smart laminated carbon nanotube-reinforced composite cylindrical panels on elastic foundations in hygrothermal environments. Thin-Walled Struct 155:106945. https://doi.org/10.1016/j.tws.2020.106945

    Article  Google Scholar 

  43. Bisheh H, Wu N, Rabczuk T (2021) A study on the effect of electric potential on vibration of smart nanocomposite cylindrical shells with closed circuit. Thin-Walled Struct 166:108040. https://doi.org/10.1016/j.tws.2021.108040

    Article  Google Scholar 

  44. Nanthakumar SS, Lahmer T, Zhuang X et al (2016) Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Probl Sci Eng 24:153–176. https://doi.org/10.1080/17415977.2015.1017485

    Article  MathSciNet  Google Scholar 

  45. Vu-Bac N, Lahmer T, Zhuang X et al (2016) A software framework for probabilistic sensitivity analysis for computationally expensive models. Adv Eng Softw 100:19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005

    Article  Google Scholar 

  46. Hamdia KM, Ghasemi H, Zhuang X et al (2018) Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput Methods Appl Mech Eng 337:95–109. https://doi.org/10.1016/j.cma.2018.03.016

    Article  MathSciNet  MATH  Google Scholar 

  47. Ghasemi H, Park HS, Rabczuk T (2018) A multi-material level set-based topology optimization of flexoelectric composites. Comput Methods Appl Mech Eng 332:47–62. https://doi.org/10.1016/j.cma.2017.12.005

    Article  MathSciNet  MATH  Google Scholar 

  48. Guo H, Zhuang X, Rabczuk T (2019) A deep collocation method for the bending analysis of Kirchhoff plate. Comput Mater Continua 59:433–456. https://doi.org/10.32604/cmc.2019.06660

    Article  Google Scholar 

  49. Samaniego E, Anitescu C, Goswami S et al (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790. https://doi.org/10.1016/j.cma.2019.112790

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhuang X, Guo H, Alajlan N et al (2021) Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. Eur J Mech A Solids 87:104225. https://doi.org/10.1016/j.euromechsol.2021.104225

    Article  MathSciNet  MATH  Google Scholar 

  51. Daniel IM, Ishai O (2006) Engineering mechanics of composite materials, 2nd edn. Oxford University Press, New York

    Google Scholar 

  52. Nasihatgozar M, Daghigh V, Eskandari M et al (2016) Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes. Int J Mech Sci 107:69–79. https://doi.org/10.1016/j.ijmecsci.2016.01.010

    Article  Google Scholar 

  53. Hasheminejad SM, Alaei-Varnosfaderani M (2014) Acoustic radiation and active control from a smart functionally graded submerged hollow cylinder. J Vib Control 20:2202–2220. https://doi.org/10.1177/1077546313483787

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bisheh.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The components of lamina transformed reduced stiffness matrix \({\left[{Q}_{ij}\right]}_{K} (i,j=x,y,s)\) as a function of the components of the lamina principal stiffness matrix \({\left[{Q}_{ij}\right]}_{K} (i,j=\mathrm{1,2},6)\) are given by

$$\begin{aligned} Q_{xx} & = m^{4} Q_{11} + n^{4} Q_{22} + 2m^{2} n^{2} Q_{12} + 4m^{2} n^{2} Q_{66} , \\ Q_{yy} & = n^{4} Q_{11} + m^{4} Q_{22} + 2m^{2} n^{2} Q_{12} + 4m^{2} n^{2} Q_{66} , \\ Q_{xy} & = m^{2} n^{2} Q_{11} + m^{2} n^{2} Q_{22} + \left( {m^{4} + n^{4} } \right)Q_{12} - 4m^{2} n^{2} Q_{66} , \\ Q_{xs} & = m^{3} nQ_{11} - mn^{3} Q_{22} - mn\left( {m^{2} - n^{2} } \right)Q_{12} - 2mn\left( {m^{2} - n^{2} } \right)Q_{66} , \\ Q_{ys} & = mn^{3} Q_{11} - m^{3} nQ_{22} + mn\left( {m^{2} - n^{2} } \right)Q_{12} + 2mn\left( {m^{2} - n^{2} } \right)Q_{66} , \\ Q_{ss} & = m^{2} n^{2} Q_{11} + m^{2} n^{2} Q_{22} - 2m^{2} n^{2} Q_{12} + \left( {m^{2} - n^{2} } \right)^{2} Q_{66} . \\ \end{aligned}$$
(24)

where

$$Q_{11} = \frac{{E_{11} }}{{1 - v_{12} v_{21} }}, Q_{12} = \frac{{v_{21} E_{11} }}{{1 - v_{12} v_{21} }}, Q_{21} = \frac{{v_{12} E_{22} }}{{1 - v_{12} v_{21} }}, Q_{22} = \frac{{E_{22} }}{{1 - v_{12} v_{21} }} , Q_{66} = G_{12} ,$$
(25)

and

$$m = \cos \theta , n = \sin \theta .$$
(26)

Appendix 2

$$\begin{aligned} \overline{c}_{11} & = c_{11} - \frac{{c_{13}^{2} }}{{c_{33} }} , \overline{c}_{12} = c_{12} - \frac{{c_{13} c_{23} }}{{c_{33} }} , { }\overline{c}_{22} = c_{22} - \frac{{c_{23}^{2} }}{{c_{33} }} , \overline{c}_{66} = c_{66} , \\ \overline{e}_{31} & = e_{31} - \frac{{c_{13} e_{33} }}{{c_{33} }}, \;\overline{e}_{32} = e_{32} - \frac{{c_{23} e_{33} }}{{c_{33} }}, \\ \overline{ \in }_{11} & = \in_{11} + \frac{{e_{15}^{2} }}{{c_{55} }}, \overline{ \in }_{22} = \in_{22} + \frac{{e_{24}^{2} }}{{c_{44} }} , \overline{ \in }_{33} = \in_{33} + \frac{{e_{33}^{2} }}{{c_{33} }} \\ \end{aligned}$$
(27)

Appendix 3

$$\begin{aligned} A_{1} & = - D_{xx} - \overline{c}_{11} \left( {\frac{{h_{p} h^{2} }}{2} + hh_{{\text{p}}}^{2} + \frac{{2h_{{\text{p}}}^{3} }}{3}} \right) \\ A_{2} & = - D_{xy} - \overline{c}_{12} \left( {\frac{{h_{p} h^{2} }}{2} + hh_{{\text{p}}}^{2} + \frac{{2h_{{\text{p}}}^{3} }}{3}} \right) \\ A_{3} & = - 2D_{xs} \\ A_{4} & = - \frac{{4h_{{\text{p}}} }}{\pi }\overline{e}_{31} \\ B_{1} & = - D_{yx} - \overline{c}_{12} \left( {\frac{{h_{{\text{p}}} h^{2} }}{2} + hh_{{\text{p}}}^{2} + \frac{{2h_{{\text{p}}}^{3} }}{3}} \right) \\ B_{2} & = - D_{yy} - \overline{c}_{22} \left( {\frac{{h_{{\text{p}}} h^{2} }}{2} + hh_{{\text{p}}}^{2} + \frac{{2h_{{\text{p}}}^{3} }}{3}} \right) \\ B_{3} & = - 2D_{ys} \\ B_{4} & = - \frac{{4h_{p} }}{\pi }\overline{e}_{32} \\ C_{1} & = - D_{sx} \\ C_{2} & = - D_{sy} \\ C_{3} & = - 2D_{ss} - \overline{c}_{66} \left( {h_{p} h^{2} + 2hh_{{\text{p}}}^{2} + \frac{{4h_{p}^{3} }}{3}} \right). \\ \end{aligned}$$
(28)

where

$$\left[ D \right]_{ij} = \frac{1}{3}\mathop \sum \limits_{K = 1}^{N} \left[ Q \right]_{ij}^{K} \left( {z_{K}^{3} - z_{K - 1}^{3} } \right) i,j = x,y,s.$$
(29)

Appendix 4

$$\begin{aligned} L_{11} & = I_{0} \left( {c\gamma } \right)^{2} + \gamma^{4} \left( {A_{1} + A_{2} + A_{3} + B_{1} + B_{2} + B_{3} + 2C_{1} + 2C_{2} + 2C_{3} } \right) \\ L_{12} & = - \gamma^{2} \left( {A_{4} + B_{4} } \right) \\ L_{21} & = 2h_{{\text{p}}} \gamma^{2} \left( {\overline{e}_{31} + \overline{e}_{32} } \right) \\ L_{22} & = \frac{{4h_{{\text{p}}} }}{\pi }\gamma^{2} \left( {\overline{ \in }_{11} + \overline{ \in }_{22} } \right) + \frac{4\pi }{{h_{p} }}\overline{ \in }_{33} . \\ \end{aligned}$$
(30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisheh, H. Wave dispersion relations in laminated fiber-reinforced composite plates with surface-mounted piezoelectric materials. Engineering with Computers 39, 545–555 (2023). https://doi.org/10.1007/s00366-022-01600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01600-1

Keywords

Navigation