Skip to main content
Log in

FPGA-orthopoly: a hardware implementation of orthogonal polynomials

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

There are many algorithms based on orthogonal functions that can be applied to real-world problems. For example, many of them can be reduced to approximate the solution of a dynamical system, and the approximation can be done with orthogonal functions. But calculating the orthogonal functions is very time-consuming, there are many difficulties in implementation of them and because of these drawbacks, they are not utilized in real applications. For the purpose of solving this issue and filling the gap between the theory and real applications, in this paper, an FPGA implementation of some classical orthogonal polynomials families is presented. Here, hardware architectures of the first and second kinds of Chebyshev, Jacobi, Legendre, Gegenbauer, Laguerre, and Hermit polynomials are presented. The experiments show that the presented architectures are low power, fast, and with a small circuit area. The obtained results show a 10.5\(\times\) speed-up in the best case, 1.5\(\times\) speed-up in the worst case, and at least 47% reduction in power consumption in comparison with the state-of-the-art hardware implementations. All implementations and codes are available at https://github.com/sampp098/forthopoly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen F, Shen J, Yu H (2012) A new spectral element method for pricing European options under the Black-Scholes and Merton jump diffusion models. J Sci Comput 52(3):499–518

    MathSciNet  MATH  Google Scholar 

  2. Xiu D (2014) Hermite polynomial based expansion of European option prices. J Econom 179(2):158–177

    MathSciNet  MATH  Google Scholar 

  3. Willems S (2019) Asian option pricing with orthogonal polynomials. Quantit Finance 19(4):605–618

    MathSciNet  MATH  Google Scholar 

  4. Bhrawy A (2013) A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients. Appl Math Comput 222:255–264

    MathSciNet  MATH  Google Scholar 

  5. Olmos D, Shizgal BD (2009) Pseudospectral method of solution of the Fitzhugh-Nagumo equation. Math Comput Simul 79(7):2258–2278

    MathSciNet  MATH  Google Scholar 

  6. Moayeri M, Rad J, Parand K (2020) Dynamical behavior of reaction-diffusion neural networks and their synchronization arising in modeling epileptic seizure: a numerical simulation study. Comput Math Appl 80(8):1887–1927

    MathSciNet  MATH  Google Scholar 

  7. Pandey RK, Kumar N, Bhardwaj A, Dutta G (2012) Solution of lane-emden type equations using legendre operational matrix of differentiation. Appl Math Comput 218(14):7629–7637

    MathSciNet  MATH  Google Scholar 

  8. Doha E, Bhrawy A, Hafez R, Abdelkawy M (2014) A Chebyshev-Gauss-Radau scheme for nonlinear hyperbolic system of first order. Appl Math Inf Sci 8(2):535–544

    MathSciNet  Google Scholar 

  9. Pedram P, Mirzaei M, Gousheh S (2007) Using spectral method as an approximation for solving hyperbolic pdes. Comput Phys Commun 176(9–10):581–588

    MathSciNet  MATH  Google Scholar 

  10. Akram M, Muhammad G, Allahviranloo T (2019) Bipolar fuzzy linear system of equations. Comput Appl Math 38(2):69

    MathSciNet  MATH  Google Scholar 

  11. Mahapatra R, Samanta S, Allahviranloo T, Pal M (2019) Radio fuzzy graphs and assignment of frequency in radio stations. Comput Appl Math 38(3):117

    MathSciNet  MATH  Google Scholar 

  12. Abbasi F, Allahviranloo T (2019) Fuzzy reliability estimation using the new operations of transmission average on rational-linear patchy fuzzy numbers. Soft Comput 23(10):3383–3396

    MATH  Google Scholar 

  13. Ahmadian A, Suleiman M, Salahshour S, Baleanu D (2013) A jacobi operational matrix for solving a fuzzy linear fractional differential equation. Adv Differ Equ 2013(1):1–29

    MathSciNet  MATH  Google Scholar 

  14. Bhrawy AH, Alofi A (2013) The operational matrix of fractional integration for shifted chebyshev polynomials. Appl Math Lett 26(1):25–31

    MathSciNet  MATH  Google Scholar 

  15. Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59(3):1326–1336

    MathSciNet  MATH  Google Scholar 

  16. Doha E, Bhrawy A, Ezz-Eldien S (2012) A new jacobi operational matrix: an application for solving fractional differential equations. Appl Math Model 36(10):4931–4943

    MathSciNet  MATH  Google Scholar 

  17. Khan N, Shaikh A, Raja MZ, Khan S (2016) A neural computational intelligence method based on legendre polynomials for fuzzy fractional order differential equation. J Appl Math Stat Inform 12(2):67–82

    MathSciNet  MATH  Google Scholar 

  18. Bhrawy AH, Taha TM, Machado JAT (2015) A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn 81(3):1023–1052

    MathSciNet  MATH  Google Scholar 

  19. Tian M, Wang W (2017) Some sets of orthogonal polynomial kernel functions. Appl Soft Comput 61:742–756

    Google Scholar 

  20. Nadira A, Abdessamad A, Mohamed BS (2019) Regularized jacobi wavelets kernel for support vector machines. Stat Optimiz Inf Comput 7(4):669–685

    MathSciNet  Google Scholar 

  21. Padierna LC, Carpio M, Rojas-Domínguez A, Puga H, Fraire H (2018) A novel formulation of orthogonal polynomial kernel functions for SVM classifiers: the Gegenbauer family. Pattern Recogn 84:211–225

    Google Scholar 

  22. Parodi M, Gómez JC (2014) Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations. Pattern Recogn 47(1):128–140

    Google Scholar 

  23. Ozer S, Chen CH, Cirpan HA (2011) A set of new Chebyshev kernel functions for support vector machine pattern classification. Pattern Recogn 44(7):1435–1447

    MATH  Google Scholar 

  24. Zhao J, Yan G, Feng B, Mao W, Bai J (2013) An adaptive support vector regression based on a new sequence of unified orthogonal polynomials. Pattern Recogn 46(3):899–913

    MATH  Google Scholar 

  25. Hajimohammadi Z, Baharifard F, Parand K (2020) A new numerical learning approach to solve general Falkner–Skan model. Eng Comput. https://doi.org/10.1007/s00366-020-01114-8

  26. Moghaddam VH, Hamidzadeh J (2016) New hermite orthogonal polynomial kernel and combined kernels in support vector machine classifier. Pattern Recogn 60:921–935

    MATH  Google Scholar 

  27. Liu X, Yue X (2019) A set of new hermite kernel functions in kernel extreme learning machine and application in human action recognition. Int J Pattern Recognit Artif Intell 33(12):1955014

    Google Scholar 

  28. Hadian Rasanan AH, Bajalan N, Parand K, Rad JA (2020) Simulation of nonlinear fractional dynamics arising in the modeling of cognitive decision making using a new fractional neural network. Math Methods Appl Sci 43(3):1437–1466

    MathSciNet  MATH  Google Scholar 

  29. Mall S, Chakraverty S (2016) Application of Legendre Neural Network for solving ordinary differential equations. Appl Soft Comput 43:347–356

    Google Scholar 

  30. Hadian-Rasanan A, Rahmati D, Gorgin S, Parand K (2020) A single layer fractional orthogonal neural network for solving various types of Lane-Emden equation. New Astron 75:101307

    Google Scholar 

  31. Mall S, Chakraverty S (2017) Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840

    Google Scholar 

  32. Omidi M, Arab B, Rasanan AHH, Rad J, Parand K (2021) Learning nonlinear dynamics with behavior ordinary/partial/system of the differential equations: looking through the lens of orthogonal neural networks. Eng Comput. https://doi.org/10.1007/s00366-021-01297-8

  33. Mall S, Chakraverty S (2014) Chebyshev neural network based model for solving Lane-Emden type equations. Appl Math Comput 247:100–114

    MathSciNet  MATH  Google Scholar 

  34. Hajimohammadi Z, Baharifard F, Ghodsi A, Parand K (2021) Fractional Chebyshev deep neural network (fcdnn) for solving differential models. Chaos Solitons Fractals 153:111530

    MathSciNet  MATH  Google Scholar 

  35. Mall S, Chakraverty S (2015) Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev Neural Network method. Neurocomputing 149:975–982

    Google Scholar 

  36. Mall S, Chakraverty S (2016) Hermite functional link neural network for solving the Van der Pol-duffing oscillator equation. Neural Comput 28(8):1574–1598

    MathSciNet  MATH  Google Scholar 

  37. Schoutens W (2012) Stochastic processes and orthogonal polynomials, vol 146. Springer Science & Business Media, New York

    MATH  Google Scholar 

  38. Dai L, Yuan M, Zhang X (2014) Accelerate bilateral filter using hermite polynomials. Electron Lett 50(20):1432–1434

    Google Scholar 

  39. Barrio R, Du P, Jiang H, Serrano S (2018) Orthopoly: a library for accurate evaluation of series of classical orthogonal polynomials and their derivatives. Comput Phys Commun 231:146–162

    MATH  Google Scholar 

  40. Latifi S, Delkhosh M (2019) Spsmat: Gnu octave software package for spectral and pseudospectral methods. arXiv preprint arXiv:1906.09964

  41. Pano-Azucena AD, Tlelo-Cuautle E, Muñoz-Pacheco JM, de la Fraga LG (2019) Fpga-based implementation of different families of fractional-order chaotic oscillators applying grünwald-letnikov method. Commun Nonlinear Sci Numer Simul 72:516–527

    MathSciNet  MATH  Google Scholar 

  42. Perez-Padron J, Posadas-Castillo C, Paz-Perez J, Zambrano-Serrano E, Platas-Garza M (2021) Fpga realization and Lyapunov–Krasovskii analysis for a master-slave synchronization scheme involving chaotic systems and time-delay neural networks. Math Probl Eng 2021:2604874

  43. Abdelaty AM, Roshdy M, Said LA, Radwan AG (2020) Numerical simulations and fpga implementations of fractional-order systems based on product integration rules. IEEE Access 8:102093–102105

    Google Scholar 

  44. Tolba MF, Saleh H, Mohammad B, Al-Qutayri M, Elwakil AS, Radwan AG. Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system. Nonlinear Dyn. 2020;99:3143–3154.

    Google Scholar 

  45. Mohamed SM, Sayed WS, Said LA, Radwan AG (2021) Reconfigurable fpga realization of fractional-order chaotic systems. IEEE Access 9:89376–89389

    Google Scholar 

  46. Hajduk Z (2017) High accuracy fpga activation function implementation for neural networks. Neurocomputing 247:59–61

    Google Scholar 

  47. Hajduk Z (2018) Reconfigurable fpga implementation of neural networks. Neurocomputing 308:227–234

    Google Scholar 

  48. Pano-Azucena A, Tlelo-Cuautle E, Rodriguez-Gomez G, De La Fraga L (2018) Fpga-based implementation of chaotic oscillators by applying the numerical method based on trigonometric polynomials. AIP Adv 8(7):075217

    Google Scholar 

  49. Sharp R, Peng H (2011) Vehicle dynamics applications of optimal control theory. Veh Syst Dyn 49(7):1073–1111

    Google Scholar 

  50. Bulirsch R, Vögel M, von Stryk O, Chucholowski C, Wolter T-M (2003) An optimal control approach to real-time vehicle guidance. Mathematics-Key technology for the future. Springer, New York, pp 84–102

    Google Scholar 

  51. Ross IM, Fahroo F (2006) Issues in the real-time computation of optimal control. Math Comput Model 43(9–10):1172–1188

    MathSciNet  MATH  Google Scholar 

  52. Bell WW (2004) Special functions for scientists and engineers, Courier Corporation

  53. Parand K, Dehghan M, Baharifard F (2013) Solving a laminar boundary layer equation with the rational Gegenbauer functions. Appl Math Model 37(3):851–863

    MathSciNet  MATH  Google Scholar 

  54. Dehestani H, Ordokhani Y, Razzaghi M (2020) Application of fractional Gegenbauer functions in variable-order fractional delay-type equations with non-singular kernel derivatives. Chaos Solitons Fractals 140:110111

    MathSciNet  MATH  Google Scholar 

  55. Kazem S, Abbasbandy S, Kumar S (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37(7):5498–5510

    MathSciNet  MATH  Google Scholar 

  56. Hadian-Rasanan AH, Amani Rad J (2020) Brain activity reconstruction by finding a source parameter in an inverse problem. Math Methods Interdiscip Sci 343–368

  57. Parand K, Moayeri MM, Latifi S, Delkhosh M (2017) A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions. Eur Phys J Plus 132(7):325

    Google Scholar 

  58. Parand K, Dehghan M, Taghavi A (2010) Modified generalized Laguerre function Tau method for solving laminar viscous flow. Int J Numer Methods Heat Fluid Flow 20(7):728–743

    MathSciNet  Google Scholar 

  59. Gürbüz B, Sezer M (2014) Laguerre polynomial approach for solving Lane-Emden type functional differential equations. Appl Math Comput 242:255–264

    MathSciNet  MATH  Google Scholar 

  60. Parand K, Rezaei A, Ghaderi S (2011) An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method. Commun Nonlinear Sci Numer Simul 16(1):274–283

    MathSciNet  MATH  Google Scholar 

  61. Parand K, Dehghan M, Rezaei A, Ghaderi S (2010) An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method. Comput Phys Commun 181(6):1096–1108

    MathSciNet  MATH  Google Scholar 

  62. Barrio R, Peña J (2002) Numerical evaluation of the pth derivative of Jacobi series. Appl Numer Math 43(4):335–357

    MathSciNet  MATH  Google Scholar 

  63. Gil RB (1997) Polinomios de Chebyshev, algoritmos y aplicación en la determinación y compresión de órbitas, Ph.D. thesis, Universidad de Zaragoza

  64. Schaumont PR (2012) A practical introduction to hardware/software codesign. Springer Science & Business Media, New York

    MATH  Google Scholar 

  65. Cong J, Liu B, Neuendorffer S, Noguera J, Vissers K, Zhang Z (2011) High-level synthesis for FPGAs: from prototyping to deployment. IEEE Trans Comput Aided Des Integr Circuits Syst 30(4):473–491

    Google Scholar 

  66. Crockett LH, Elliot RA, Enderwitz MA, Stewart RW (2014) The Zynq Book: embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable Soc, Strathclyde Academic Media

  67. mys-7020 Z-Turn. Z-Turn-7020 FPGA board. [online] http://www.myirtech.com. Accessed 20 June 2019

  68. Pi, Raspberry Raspberry Pi 3 model b. [online] https://www.raspberrypi.org. Accessed 20 June 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Hadian Rasanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 7.

Table 7 Table of the coefficients in the BCS algorithm [39]

Appendix 2

See Fig. 14.

Fig. 14
figure 14

The implemented design of the OPPU for Chebyshev1 on the ZTurn 7020 FPGA board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghari, M., Hadian Rasanan, A.H., Gorgin, S. et al. FPGA-orthopoly: a hardware implementation of orthogonal polynomials. Engineering with Computers 39, 2257–2276 (2023). https://doi.org/10.1007/s00366-022-01612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01612-x

Keywords

Navigation