Skip to main content
Log in

Divergence-free meshless local Petrov–Galerkin method for Stokes flow

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The purpose of the present paper is development of an efficient meshless solution of steady incompressible Stokes flow problems with constant viscosity in two dimensions, with algebraic order of accuracy. This is achieved by employing a weak formulation with divergence-free matrix-valued quadratic Matérn (QM) radial basis function (RBF) for the shape function and divergence-free matrix-valued compactly supported Gaussian (CSG) RBF for the weight function on the computational domain and its boundary. The continuity equation is inherently built-in in the formulation and the pressure is eliminated from the formulation with the aid of divergence theorem and the choice of divergence-free weight function. The developed method is thus iteration free, and results in a banded system of equations to be solved jointly for both velocity components. Gauss–Legendre cell integration is performed in the current investigation. The characteristics of the method are assessed by changing its free parameters, i.e., weight functions’ sub-domain radius and shape functions’ support domain radius and the shape parameter. A sensitivity test for several choices of shape functions with regular centers arrangement is done to identify the appropriate support size for the shape and weight functions and stagnation errors are reported accordingly. To the best of our knowledge, this article is initiative in introducing the application of divergence-free MLPG method to incompressible flows, aiming at elimination of pressure from the governing equations in primitive variables, with the aid of divergence-free RBFs through weak formulation. Only the momentum equation needs to be solved. Hence, the formulation of the problem is much simpler than the building of divergence-free elements in the related mesh-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abbaszadeh M, Dehghan M (2020) Investigation of the Oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique. Appl Numer Math 150:274–294

    MathSciNet  MATH  Google Scholar 

  2. Abbaszadeh M, Dehghan M (2020) Direct meshless local Petrov-Galerkin (DMLPG) method for time-fractional fourth-order reaction-diffusion problem on complex domains. Comput Math Appl 79(3):876–888

    MathSciNet  MATH  Google Scholar 

  3. Atluri SN, Shen S (2002) The Meshless Local Petrov-Galerkin (MLPG) Method. Tech Science Press, Singapore

    MATH  Google Scholar 

  4. Bercovier M, Engelman M (1979) A finite element for the numerical solution of viscous incompressible flows. J Comput Phys 30(2):181–201

  5. Bestehorn M (2020) Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model. Philos Trans. R Soc A 378(2174):20190508

    MathSciNet  MATH  Google Scholar 

  6. Brenner SC, Shparlinski IE, Shu C-W, Szyld D (2020) 75 Years of Mathematics of Computation: Symposium on Celebrating 75 Years of Mathematics of Computation, November 1–3, 2018, the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence. American Mathematical Soc, Rhode Island

    MATH  Google Scholar 

  7. Carrero J, Cockburn B, Schötzau D (2005) Hybridized globally divergence-free LDG methods. Part I: The Stokes problem. Math. Comp. 75(254):533–564

    MATH  Google Scholar 

  8. Cheng P, Bestehorn M, Firoozabadi A (2012) Effect of permeability anisotropy on buoyancy-driven flow for \({\text{CO}}_2\) sequestration in saline aquifers. Water Resour Res 48(9)

  9. Cockburn B, Kanschat G, Schötzau D (2004) A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comp. 74(251):1067–1096

    MathSciNet  MATH  Google Scholar 

  10. Cockburn B, Kanschat G, Schötzau D (2007) A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes Equations. J Sci Comput 31(1):61–73

    MathSciNet  MATH  Google Scholar 

  11. Cockburn B, Kanschat G, Schötzau D, Schwab C (2002) Local Discontinuous Galerkin Methods for the Stokes System. SIAM J Numer Anal 40(1):319–343

    MathSciNet  MATH  Google Scholar 

  12. Dehghan M, Abbaszadeh M (2017) Numerical investigation based on direct meshless local Petrov-Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross-Pitaevskii equation. Eng Comput 33(4):983–996

    Google Scholar 

  13. Dehghan M, Abbaszadeh M, Mohebbi A (2014) Numerical solution of system of N-coupled nonlinear Schrödinger equations via two variants of the meshless local Petrov-Galerkin (MLPG) method. In: CMES-Comp Model Eng, pp 399–444

  14. Dehghan M, Mirzaei D (2009) Meshless Local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59(5):1043–1058

    MathSciNet  MATH  Google Scholar 

  15. Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation. Eng. Anal. Bound. Elem. 32(9):747–756

    MATH  Google Scholar 

  16. Divo E, Kassab AJ (2008) Localized Meshless Modeling of Natural-Convective Viscous Flows. Numer. Heat Tr. B-Fund. 53(6):487–509

    Google Scholar 

  17. Divo E, Kassab A (2006) Iterative domain decomposition meshless method modeling of incompressible viscous flows and conjugate heat transfer. Eng. Anal. Bound. Elem. 30(6):465–478

    MATH  Google Scholar 

  18. Drake KP, Wright GB (2020) A stable algorithm for divergence-free radial basis functions in the flat limit. J. Comput. Phys. 417:109595

    MathSciNet  MATH  Google Scholar 

  19. Esfahanian V, Akbarzadeh P (2008) The Jameson’s numerical method for solving the incompressible viscous and inviscid flows by means of artificial compressibility and preconditioning method. Appl Math Comput 206(2):651–661

    MathSciNet  MATH  Google Scholar 

  20. Esfahanian V, Akbarzadeh P (2010) Local pressure preconditioning method for steady incompressible flows. Int. J. Comput. Fluid D. 24(5):169–186

    MathSciNet  MATH  Google Scholar 

  21. Fasshauer GE, Mccourt MJ (2015) Kernel-based approximation methods using Matlab. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

  22. Fasshauer GE (2007) Meshfree Approximation Methods with MATLAB. World Scientific, Singapore

    MATH  Google Scholar 

  23. Fornberg B, Flyer N (2015) A Primer on Radial Basis Functions with Applications to the Geosciences. SIAM, Philadelphia

    MATH  Google Scholar 

  24. Fuselier EJ, Shankar V, Wright GB (2016) A high-order radial basis function (RBF) Leray projection method for the solution of the incompressible unsteady Stokes equations. Comput Fluids 128:41–52

    MathSciNet  MATH  Google Scholar 

  25. Griffiths DF (1978) The construction of approximately divergence-free finite elements. In: Mathematics of finite elements and applications, Uxbridge, pp 237–245

  26. Hatić V, CisternasFernández M, Mavrič B, Založnik M, Combeau H, Šarler B (2019) Simulation of a macrosegregation benchmark in a cylindrical coordinate system with a meshless method. Int J Therm Sci 142:121–133

    Google Scholar 

  27. Hejranfar K, Khajeh-Saeed A (2011) Implementing a high-order accurate implicit operator scheme for solving steady incompressible viscous flows using artificial compressibility method. Int. J. Numer. Methods Fluids 66(8):939–962

    MathSciNet  MATH  Google Scholar 

  28. Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37(4):2337–2351

    MathSciNet  MATH  Google Scholar 

  29. Ilati M, Dehghan M (2019) DMLPG method for numerical simulation of soliton collisions in multi-dimensional coupled damped nonlinear Schrödinger system which arises from Bose-Einstein condensates. Appl Math Comput 346:244–253

    MathSciNet  MATH  Google Scholar 

  30. Ilati M, Dehghan M (2017) Application of direct meshless local Petrov-Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33(1):107–124

    Google Scholar 

  31. John V (2016) Finite Element Methods for Incompressible Flow Problems. Springer, Berlin

    MATH  Google Scholar 

  32. Kamranian M, Dehghan M, Tatari M (2017) An adaptive meshless local Petrov-Galerkin method based on a posteriori error estimation for the boundary layer problems. Appl Numer Math 111:181–196

    MathSciNet  MATH  Google Scholar 

  33. Keim C, Wendland H, High-Order A (2016) Analytically divergence-free approximation method for the time-dependent Stokes problem. SIAM J Numer Anal

  34. Kosec G, Šarler B (2014) Simulation of macrosegregation with mesosegregates in binary metallic casts by a meshless method. Eng. Anal. Bound. Elem. 45:36–44

    MathSciNet  MATH  Google Scholar 

  35. G. Kosec, A local numerical solution of a fluid-flow problem on an irregular domain, Adv. Eng. Softw. 120 (2018) 36–44

    Google Scholar 

  36. Kosec G, Slak J, Depolli M, Trobec R, Pereira K, Tomar S, Jacquemin T, Bordas SPA, AbdelWahab M (2019) Weak and strong from meshless methods for linear elastic problem under fretting contact conditions. Tribol Int 138:392–402

    Google Scholar 

  37. Lehto E, Shankar V, Wright GB (2017) A Radial Basis Function (RBF) Compact Finite Difference (FD) Scheme for Reaction-Diffusion Equations on Surfaces. SIAM J Sci Comput 39(5):A2129–A2151

    MathSciNet  MATH  Google Scholar 

  38. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer Science & Business Media, Netherlands

    Google Scholar 

  39. Liu GR (2009) Meshfree Methods: Moving Beyond the Finite Element Method, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  40. Loukopoulos VC, Bourantas GC (2012) MLPG6 for the solution of incompressible flow equations. CMES-Comp. Model. Eng. 88(6):531–558

    MathSciNet  MATH  Google Scholar 

  41. S. Lowitzsch, Error estimates for matrix-valued radial basis function interpolation, J. Approx. Theory 137 (2) (2005) 238–249

    MathSciNet  MATH  Google Scholar 

  42. Michałek T, Kowalewski T, Šarler B (2005) Natural convection for anomalous density variation of water: Numerical benchmark. Prog. Comput. Fluid Dy. 5:158–170

    MATH  Google Scholar 

  43. Mirzaei D, Schaback R (2013) Direct Meshless Local Petrov-Galerkin (DMLPG) method: A generalized MLS approximation. Appl Numer Math 68:73–82

    MathSciNet  MATH  Google Scholar 

  44. Mirzaei D (2016) A greedy meshless local Petrov–Galerkin method based on radial basis functions. Numer Methods Partial Differ. Equ. 32(3):847–861

    MathSciNet  MATH  Google Scholar 

  45. Mirzaei D, Dehghan M (2011) MLPG method for transient heat conduction problem with MLS as Trial approximation in both time and space domains. In: CMES-Comp Model Eng, pp 185–210

  46. Mirzaei D, Dehghan M (2010) MLPG approximation to the p-Laplace problem. Comput Mech 46(6):805–812

    MathSciNet  MATH  Google Scholar 

  47. Mirzaei D, Dehghan M (2010) Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation. J Comput Appl Math 233(10):2737–2754

    MathSciNet  MATH  Google Scholar 

  48. Mitrano AA, Platte RB (2015) A numerical study of divergence-free kernel approximations. Appl Numer Math 96:94–107

    MathSciNet  MATH  Google Scholar 

  49. Mramor K, Vertnik R, Šarler B (2013) Low and Intermediate Re Solution of Lid Driven Cavity Problem by Local Radial Basis Function Collocation Method. CMC-Comput. Mater. Con. 36(1):1–21

    MATH  Google Scholar 

  50. Munson BR, Rothmayer AP, Okiishi TH, Huebsch WW (2012) Fundamentals of Fluid Mechanics, 7th edn. Wiley, Hoboken, NJ

    Google Scholar 

  51. Narcowich FJ, Ward JD (1994) Generalized Hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comp. 63(208):661–687

    MathSciNet  MATH  Google Scholar 

  52. Narcowich FJ, Ward JD, Wright GB (2007) Divergence-Free RBFs on Surfaces. J Fourier Anal Appl 13(6):643–663

    MathSciNet  MATH  Google Scholar 

  53. Ożański WS (2017) The Lagrange multiplier and the stationary Stokes equations. J Appl Anal 23(2):137–140

    MathSciNet  MATH  Google Scholar 

  54. Parseh K, Hejranfar K (2018) Assessment of Characteristic Boundary Conditions Based on the Artificial Compressibility Method in Generalized Curvilinear Coordinates for Solution of the Euler Equations. Comput. Methods Appl. Math. 18(4):717–740

    MathSciNet  MATH  Google Scholar 

  55. Pouagare M, Lakshminarayana B (1986) A space-marching method for viscous incompressible internal flows. J Comput Phys 64(2):389–415

    MathSciNet  MATH  Google Scholar 

  56. Schaback R (2007) Why does MLPG work? In: The international conference on computational & experimental engineering and sciences, vol 3, no 2

  57. Sedaghatjoo Z, Dehghan M, Hosseinzadeh H (2018) Numerical solution of 2D Navier-Stokes equation discretized via boundary elements method and finite difference approximation. Eng. Anal. Bound. Elem. 96:64–77

    MathSciNet  MATH  Google Scholar 

  58. Shankar V, Wright GB, Narayan A (2020) A Robust Hyperviscosity Formulation for Stable RB-FD Discretizations of Advection-Diffusion-Reaction Equations on Manifolds. SIAM J Sci Comput 42(4):A2371–A2401

    MATH  Google Scholar 

  59. Slak J, Kosec G (2019) Medusa: a C++ library for solving PDEs using strong form mesh-free methods. arXiv:1912.13282 [cs, math]

  60. Southard J (2006) Chapter 3, Flow past a sphere II: Stokes’ law, the Bernoulli equation, turbulence, boundary layers, flow separation, Introduction to fluid motions, sediment transport, and current-generated sedimentary structures. MIT University, Lecture

  61. Strikwerda JC (1984) Finite Difference Methods for the Stokes and Navier-Stokes Equations. SIAM J. Sci. and Stat. Comput. 5(1):56–68

    MathSciNet  MATH  Google Scholar 

  62. Šarler B, Perko J, Chen C (2004) Radial basis function collocation method solution of natural convection in porous media. Int. J. Numer. Method H. 14(2):187–212

    MATH  Google Scholar 

  63. Šarler B, Wen S, Li M (2016) Method of regularized sources for Stokes flow problems with improved calculation of velocity derivatives at the boundary. J Phys: Conf Ser 745:032025

    Google Scholar 

  64. Tannehill JC, Pletcher RH (2011) Computational Fluid Mechanics and Heat Transfer, 3rd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  65. Tillenius M, Larsson E, Lehto E, Flyer N (2015) A scalable RBF-FD method for atmospheric flow. J Comput Phys 298:406–422

    MathSciNet  MATH  Google Scholar 

  66. Trask N, Maxey M, Hu X (2018) A compatible high-order meshless method for the Stokes equations with applications to suspension flows. J Comput Phys 355:310–326

    MathSciNet  MATH  Google Scholar 

  67. Trobec R, Kosec G (2015) Parallel Scientific Computing: Theory, Algorithms, and Applications of Mesh Based and Meshless Methods. Springer, Heidelberg

    MATH  Google Scholar 

  68. Trobec R, Kosec G, Šterk M, Šarler B (2012) Comparison of local weak and strong form meshless methods for 2-D diffusion equation. Eng. Anal. Bound. Elem. 36(3):310–321

    MathSciNet  MATH  Google Scholar 

  69. Wang K, Wen S, Zahoor R, Li M, Šarler B (2016) Method of regularized sources for axisymmetric Stokes flow problems. Int. J. Numer. Method H. 26(3/4):1226–1239

    MathSciNet  MATH  Google Scholar 

  70. Watkins DS (2017) Book Reviews. SIAM Rev. 59(3), 681–699

    MathSciNet  Google Scholar 

  71. Wendland H (2009) Divergence-Free Kernel Methods for Approximating the Stokes Problem. SIAM J Numer Anal 47(4):3158–3179

    MathSciNet  MATH  Google Scholar 

  72. Wittwar D, Santin G, Haasdonk B (2018) Interpolation with uncoupled separable matrix-valued kernels. Dolomites Research Notes on Approximation 11(11/2018):23–39

    MathSciNet  Google Scholar 

  73. Wright GB, Fornberg B (2017) Stable computations with flat radial basis functions using vector-valued rational approximations. J Comput Phys 331:137–156

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to appreciate the time dedicated by the reviewers to provide us with their valuable feedback on the manuscript. The first author has sincere gratitude to Prof. Božidar Šarler for hosting her at the Faculty of Mechanical Engineering, University of Ljubljana, Slovenia and for his kind support in preparation of this manuscript during her study leave. Discussions with Dr. Wojciech S. Ożański is also highly appreciated. Fourth author would like to acknowledge the financial support of the Slovenian Research Agency (ARRS) research core funding No. P2-0095. B. Šarler and B. Mavrič were funded by core funding ARRS P2-0162 and project L2-1718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Tensor–vector identities

Assume vectors \(\vec {V}, \vec {W}: {\mathbb {R}}^2 \rightarrow {\mathbb {R}}^2\) defined as

$$\begin{aligned} {\vec {V}} = (V_x,V_y)^T, \, {\vec {W}} = (W_x,W_y)^T, \end{aligned}$$
(5.1)

with \(V_{x,x} = \displaystyle {\frac{\partial V_{x}}{\partial x}}\), \(V_{x,y} = \displaystyle {\frac{\partial V_{x}}{\partial y}}\), \(V_{y,x} = \displaystyle {\frac{\partial V_{y}}{\partial x}}\), \(V_{y,y} = \displaystyle {\frac{\partial V_{y}}{\partial y}}\), \(V_{x,xx} = \displaystyle {\frac{\partial ^2 V_{x}}{\partial x^2}}\), \(V_{x,xx} = \displaystyle {\frac{\partial ^2 V_{x}}{\partial x^2}}\), \(V_{x,yy} = \displaystyle {\frac{\partial ^2 V_{x}}{\partial y^2}}\), \(V_{y,xx} = \displaystyle {\frac{\partial ^2 V_{y}}{\partial x^2}}\), \(V_{y,yy} = \displaystyle {\frac{\partial ^2 V_{y}}{\partial y^2}}\), and also

$$\begin{aligned} (\cdot )_{,x} = \displaystyle {\frac{\partial (\cdot )}{\partial x}},\qquad (\cdot )_{,y} = \displaystyle {\frac{\partial (\cdot )}{\partial y}}, \end{aligned}$$

then the following relations hold

$$\begin{aligned} \nabla {\vec {V}}= & {} \begin{bmatrix} V_{x,x} &{} V_{y,x} \\ V_{x,y} &{} V_{y,y} \\ \end{bmatrix}, \end{aligned}$$
(5.2)
$$\begin{aligned} \Delta {\vec {V}}= & {} \nabla \cdot \left( {\nabla {\vec {V}}}\right) = \begin{bmatrix} V_{x,xx} + V_{x,yy}\\ V_{y,xx} + V_{y,yy}\\ \end{bmatrix}, \end{aligned}$$
(5.3)
$$\begin{aligned} \nabla \vec {V} \cdot \vec {W}= & {} \begin{bmatrix} V_{x,x} \, W_{x} + V_{y,x} \, W_{y}\\ V_{x,y} \, W_{x} + V_{y,y} \, W_{y}\\ \end{bmatrix}, \end{aligned}$$
(5.4)
$$\begin{aligned} \nabla \cdot \left( {\nabla \vec {V} \cdot \vec {W}}\right)= & {} \left( {V_{x,x} \, W_x + V_{y,x} \, W_y }\right) _{,x} \nonumber \\&+ \left( {V_{x,y} \, W_x + V_{y,y} \, W_y }\right) _{,y} \nonumber \\= & {} V_{x,xx} \, W_x + V_{x,x} \, W_{x,x} \nonumber \\&+ V_{y,xx} \, W_y + V_{y,x} \, W_{y,x} \nonumber \\&+ V_{x,yy} \, W_x + V_{x,y} \, W_{x,y} + V_{y,yy} \, W_y\nonumber \\&+ V_{y,y} \, W_{y,y}, \end{aligned}$$
(5.5)
$$\begin{aligned} \Delta \vec {V} \cdot \vec {W}= & {} \left( {V_{x,xx} + V_{x,yy}}\right) W_x \nonumber \\&+ \left( {V_{y,xx} + V_{y,yy}}\right) W_y \nonumber \\= & {} V_{x,xx} \, W_x + V_{x,yy} \, W_{x} \nonumber \\&+ V_{y,xx} \, W_y + V_{y,yy} \, W_{y}, \end{aligned}$$
(5.6)
$$\begin{aligned} \nabla \vec {V} : \nabla \vec {W}= & {} V_{x,x} \, W_{x,x} + V_{y,x} \, W_{y,x} \nonumber \\&+ V_{x,y} \, W_{x,y} + V_{y,y} \, W_{y,y}. \end{aligned}$$
(5.7)

According to (5.5), (5.6) and (5.7), Eq. (3.13) is trivial.

Appendix B: Analytical solution at the outlet for the laminar flow between parallel plates

Assume \(\Omega = [0,L]\times [0,h]\). The Stokes Eq. (2.4) holds at the outlet, hence,

$$\begin{aligned} \begin{array}{c} V_{x,x} + V_{y,y} = 0,\\ \quad \; V_{x,xx} + V_{x,yy} = P_{,x},\\ \quad \; V_{y,xx} + V_{y,yy} = P_{,y}. \end{array} \end{aligned}$$
(5.8)

On the other hand, due to the flow property at the outlet,

$$\begin{aligned} V_y = 0. \end{aligned}$$
(5.9)

The first result is obtained from the continuity equation

$$\begin{aligned} V_{x,x} = 0, \end{aligned}$$
(5.10)

next, is due to the momentum equation that the pressure is not a function of the independent variable y, i.e., \(P_{,y} = 0\). Then, \(V_{x,x} = 0\) requires that

$$\begin{aligned} V_{x,yy} = P_{,x}. \end{aligned}$$
(5.11)

Two times integration of (5.11) with respect to y gives

$$\begin{aligned} V_x(L,y) = \displaystyle \frac{1}{2} P_{,x}y^2 + c_1 y + c_2, \end{aligned}$$
(5.12)

with \(c_1\) and \(c_2\) as the integration constants that are identified with applying the no-slip boundary conditions on the walls:

  • at \(y = 0\): \(V_x = 0\quad \rightarrow \quad c_2 = 0\).

  • at \(y = h\): \(V_x = 0\quad \rightarrow \quad \displaystyle \frac{h^2}{2}P_{,x} + c_1 h = 0 \quad \rightarrow \quad c_1 = -\displaystyle \frac{h}{2}P_{,x}.\)

Substitution of \(c_1\) and \(c_2\) in (5.12), results in

$$\begin{aligned} V_{,x}(L,y) = \displaystyle \frac{1}{2}P_{,x}\left( {y^2 - hy}\right) . \end{aligned}$$
(5.13)

The volume flow rate at the outlet cross section is equal to the integration of velocity profile over the width [0, h]

$$\begin{aligned} Q= & {} \int _A{\vec {V}.\vec {n}\,dA} = \int _0^h{V_x\,dy} = \int _0^h{\displaystyle \frac{1}{2}P_{,x}\left( {y^2 - hy}\right) \,dy}\nonumber \\= & {} -\displaystyle \frac{1}{12}\,P_{,x}\,h^3. \end{aligned}$$
(5.14)

Considering the volume flow rate for the average velocity, i.e., the total flow rate per unit that is identical to \(u_{\mathrm{in}}\)

$$\begin{aligned} Q = h\, u_{\mathrm{in}}, \end{aligned}$$
(5.15)

and finally, comparing the right hand side of Eqs. (5.14) and (5.15), gives

$$\begin{aligned} u_{\mathrm{in}} = -\displaystyle \frac{h^2}{12}\,P_{,x}. \end{aligned}$$
(5.16)

Consequently, \(V_x(L,y) = 6\, u_{\mathrm{in}}\left( {\displaystyle \frac{hy - y^2}{h^2}}\right)\).

Appendix C: A note on the entrance length

In our case of study, i.e., the Stokes flow, a simple approach to determine the entrance length is considering the parabolic shape of the fully developed velocity vector at the outlet. According to the analytical solution, the x-component of the velocity is of the form

$$\begin{aligned} V_x(L, y) = 6\, u_{\mathrm{in}}\left( {\displaystyle \frac{hy - y^2}{h^2}}\right) , \end{aligned}$$

with L denoting the channel length. \(V_x(L,y)\) reaches it’s maximum value \(\displaystyle \frac{3}{2}u_{\mathrm{in}}\) at \(y = \displaystyle \frac{h}{2}\). As a result, the value of \(|V_x(L, \frac{h}{2}) - \frac{3}{2}u_{\mathrm{in}}|\) is a good indicator whether we have considered the sufficient channel width. Please note that the relative error in maximum norm at the outlet confirms that the chosen length of the computational domain is sufficient.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Dehghan, M., Šarler, B. et al. Divergence-free meshless local Petrov–Galerkin method for Stokes flow. Engineering with Computers 38, 5359–5377 (2022). https://doi.org/10.1007/s00366-022-01621-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01621-w

Keywords

Mathematics Subject Classification

Navigation