Skip to main content
Log in

A comparative study on interior penalty discontinuous Galerkin and enriched Galerkin methods for time-fractional Sobolev equation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study documents the development of a novel scheme for spatial discretization of the time-fractional Sobolev equation. The scheme is based on a combination of continuous and discontinuous Galerkin methods which is called the enriched Galerkin method. The enriched Galerkin method has more degrees of freedom than the continuous Galerkin but smaller than the discontinuous Galerkin method. Also, the Caputo-type fractional operator is considered for fractional-order derivatives. Furthermore, unconditionally stability of the method is proved and a priori error estimate for the approximation is presented. Finally, we present several numerical examples to confirm the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35(6):2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  2. Deng WH, Hesthaven JS (2015) Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT Numer Math 55(4):967–985

    Article  MathSciNet  MATH  Google Scholar 

  3. Mustapha K (2015) Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer Math 130(3):497–516

    Article  MathSciNet  MATH  Google Scholar 

  4. Mohammadi-Firouzjaei H, Adibi M, Adibi H (2021) Local discontinuous Galerkin method for the numerical solution of fractional compartmental model with application in pharmacokinetics. J Math Model 1–15

  5. Yeganeh S, Mokhtari R, Hesthaven JS (2017) Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT Numer Math 57(3):685–707

    Article  MathSciNet  MATH  Google Scholar 

  6. Qasemi S, Rostamy D, Abdollahi N (2019) The time-fractional diffusion inverse problem subject to an extra measurement by a local discontinuous Galerkin method. BIT Numer Math 59(1):183–212

    Article  MathSciNet  MATH  Google Scholar 

  7. Eshaghi J, Kazem S, Adibi H (2019) The local discontinuous Galerkin method for 2D nonlinear time-fractional advection-diffusion equations. Eng Comput 35(4):1317–1332

    Article  Google Scholar 

  8. Mohammadi-Firouzjaei H, Adibi H, Dehghan M (2021) Local discontinuous Galerkin method for distributed-order time-fractional diffusion-wave equation: application of Laplace transform. Math Methods Appl Sci 44(6):4923–4937

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahmadinia M, Safari Z, Fouladi S (2018) Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations. BIT Numer Math 58(3):533–554

    Article  MathSciNet  MATH  Google Scholar 

  10. Becker R, Burman E, Hansbo P, Larson M G (2003) A reduced \(p^{1}\)-discontinuous Galerkin method. In: Finite Element Center Preprint 2003–2013, Chalmers University of Technology, Göteborg, Sweden

  11. Sun S, Liu J (2009) A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method. SIAM J Sci Comput 31(4):2528–2548

    Article  MathSciNet  MATH  Google Scholar 

  12. Mital P (2015) The enriched Galerkin method for linear elasticity and phase field fracture propagation, Master dissertation, The University of Texas at Austin

  13. Vamaraju J, Sen MK, De Basabe J, Wheeler MF (2018) Enriched Galerkin finite element approximation for elastic wave propagation in fractured media. J Comput Phys 372:726–747

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee S, Lee YJ, Wheeler MF (2016) A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems. SIAM J Sci Comput 38(3):A1404–A1429

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee S, Wheeler MF (2018) Enriched Galerkin methods for two-phase flow in porous media with capillary pressure. J Comput Phys 367:65–86

    Article  MathSciNet  MATH  Google Scholar 

  16. Rupp A, Hauck M, Aizinger V (2020) A subcell-enriched Galerkin method for advection problems. arXiv:200609041v1 [math.NA]

  17. Bittla M, Kuzmina D, Becker R (2014) The CG1-DG2 method for convection-diffusion equations in 2D. J Comput Appl Math 270:21–31

    Article  MathSciNet  Google Scholar 

  18. Becker R, Bittl M, Kuzmin D (2015) Analysis of a combined CG1-DG2 method for the transport equation. SIAM J Numer Anal 53(1):445–463

    Article  MathSciNet  MATH  Google Scholar 

  19. Deng WH (2008) Finite element method for the space and time fractional Fokker-Planck equation. SIAM J Numer Anal 47(1):204–226

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehghan M, Manafian J, Saadatmandi A (2010) The solution of the linear fractional partial differential equations using the homotopy analysis method. Z Naturforsch A 65(11):935–949

    Article  MATH  Google Scholar 

  21. Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26(2):448–479

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu J, Li H, Liu Y (2018) Crank-Nicolson finite element scheme and modified reduced-order scheme for fractional Sobolev equation. Numer Funct Anal Optim 39(15):1635–1655

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao J, Fang Z, Li H, Liu Y (2020) A Crank–Nicolson finite volume element method for time fractional Sobolev equations on triangular grids. Mathematics 8(9):1591

    Article  Google Scholar 

  24. Ewing RE (1975) Numerical solution of Sobolev partial differential equations. SIAM J Numer Anal 12(3):345–363

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo Z, Teng F, Chen J (2018) A POD-based reduced-order Crank–Nicolson finite volume element extrapolating algorithm for 2D Sobolev equations. Math Comput Simul 146:118–133

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhao D, Zhang Q (2019) Local discontinuous Galerkin methods with generalized alternating numerical fluxes for two-dimensional linear Sobolev equation. J Sci Comput 78:1660–1690

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang Q, Gao F (2012) A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J Sci Comput 51:107–134

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang J, Zhang Y, Guo H, Fu H (2019) A mass-conservative characteristic splitting mixed finite element method for convection-dominated Sobolev equation. Math Comput Simul 160:180–191

    Article  MathSciNet  MATH  Google Scholar 

  29. Abbaszadeh M, Dehghan M (2020) Interior penalty discontinuous Galerkin technique for solving generalized Sobolev equation. Appl Numer Math 154:172–186

    Article  MathSciNet  MATH  Google Scholar 

  30. Dehghan M, Shafieeabyaneh N, Abbaszadeh M (2020) Application of spectral element method for solving Sobolev equations with error estimation. Appl Numer Math 158:439–462

    Article  MathSciNet  MATH  Google Scholar 

  31. Riviere B (2008) Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, SIAM

  32. Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep thanks to anonymous referees for their careful reading and invaluable suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojatollah Adibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi-Firouzjaei, H., Adibi, H. & Dehghan, M. A comparative study on interior penalty discontinuous Galerkin and enriched Galerkin methods for time-fractional Sobolev equation. Engineering with Computers 38, 5379–5394 (2022). https://doi.org/10.1007/s00366-022-01624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01624-7

Keywords

Mathematics Subject Classification

Navigation