Skip to main content
Log in

Small/large amplitude vibration, snap-through and nonlinear thermo-mechanical instability of temperature-dependent FG porous circular nanoplates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The current paper investigates the nonlinear thermo-mechanical instability and small/large amplitude vibration of thermally pre/post-buckled functionally graded (FG) porous circular nanoplates in bifurcation/limit load buckling. The thermo-mechanical properties of the graded nanoplate under uniform heating are considered to be functions of temperature according to the Touloukian model. To describe the functionally graded porous materials, two different patterns of porosity distribution are adopted in which the first pattern has a uniform distribution, but the second pattern has an uneven one. The novelty of the present study and its significance can be summarized into: (i) investigating the effect of the porosity distribution and geometrical imperfection on the nonlinear thermo-mechanical bending and small/large amplitude vibration of the temperature-dependent FG circular nanoplates during bifurcation buckling. (ii) Studying the snap-through instability and small amplitude vibration of the thermally post-buckled FG porous circular nanoplates during limit load buckling. To this aim, the nonlocal elasticity theory alongside the von-Kármán nonlinear assumption is imposed to derive the nonlinear motion equations of the geometrically imperfect FG porous circular nanoplates in the framework of Hamilton’s principle. By employing the Ritz approach together with the Chebyshev polynomial as the basic functions, the coupled nonlinear equations are discretised for both clamped and simply supported edge conditions. Next, depending on the nonlinear problem at hand, three different numerical algorithms, including the Newton-Raphson iterative method, the direct displacement control strategy, and the cylindrical arc-length technique, are implemented to assess the static and dynamic behaviour of the porous nanosystem. After validating the developed mathematical model, a comprehensive examination is performed to determine the influence of the temperature dependence of materials, porosity distribution patterns, nonlocal parameter, material gradient index, imperfection sensitivity, and edge conditions on the nonlinear bending, snap-through instability, and vibration responses of the graded circular nanoplates in the pre- and post-buckling domains of bifurcation/limit load buckling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Xiaochao Chen, Lunting Chen, Songbin Huang, Ming Li, Xiao Li (2020) Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections. Appl Math Modelling 93:443–66

    MathSciNet  MATH  Google Scholar 

  2. Ashoori AR, Sadough Vanini SA (2016) Thermal buckling of annular microstructure-dependent functionally graded material plates resting on an elastic medium. Compos Part B Eng 87:245–255

    MATH  Google Scholar 

  3. Wattanasakulpong Nuttawit, Gangadhara Prusty B, Kelly Donald W, Hoffman Mark (2012) Free vibration analysis of layered functionally graded beams with experimental validation. Mater Design (1980-2015) 36:182–190

    Google Scholar 

  4. Vinyas Mahesh, Dineshkumar Harursampath (2021) Large deflection analysis of functionally graded magneto-electro-elastic porous flat panels. Eng Comput 4:1–20

    Google Scholar 

  5. Wattanasakulpong Nuttawit, Chaikittiratana Arisara (2015) Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50(5):1331–1342

    MathSciNet  MATH  Google Scholar 

  6. Ebrahimi Farzad, Ghasemi Fatemeh, Salari Erfan (2016) Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51(1):223–249

    MathSciNet  MATH  Google Scholar 

  7. Tao Chang, Dai Ting (2020) Analyses of thermal buckling and secondary instability of post-buckled S-FGM plates with porosities based on a meshfree method. Appl Math Modelling 89:268–284

    MathSciNet  MATH  Google Scholar 

  8. Shen Hui-Shen, Xiang Y, Reddy JN (2020) Effect of negative Poisson’s ratio on the post-buckling behavior of FG-GRMMC laminated plates in thermal environments. Compo Struct 253:112731

    Google Scholar 

  9. Abdelgawad Adel, Anwar Ahmed, Nassar Mohamed (2013) Snap-through buckling of a shallow arch resting on a two-parameter elastic foundation. Appl Math Modelling 37(16–17):7953–7963

    MathSciNet  Google Scholar 

  10. Salari E, Sadough Vanini SA, Ashoori AR, Akbarzadeh AH (2020) Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis. Int J Mech Sci 178:105615

    Google Scholar 

  11. Qiduo Jin, Xuan Hu, Yiru Ren, Hongyong Jiang (2020) On static and dynamic snap-throughs of the imperfect post-buckled FG-GRC sandwich beams. J Sound Vib 489:115684

    Google Scholar 

  12. Watts Gaurav, Singha MK, Pradyumna S (2018) Nonlinear bending and snap-through instability analyses of conical shell panels using element free Galerkin method. Thin-Walled Struct 122:452–462

    Google Scholar 

  13. Allahverdizadeh A, Naei MH, Nikkhah Bahrami M (2008) Nonlinear free and forced vibration analysis of thin circular functionally graded plates. J Sound Vib 310(4–5):966–984

    MATH  Google Scholar 

  14. Li Shi-Rong, Zhang Jing-Hua, Zhao Yong-Gang (2007) Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection. Thin-Walled Struct 45(5):528–536

    Google Scholar 

  15. Kiani Y (2017) Axisymmetric static and dynamics snap-through phenomena in a thermally postbuckled temperature-dependent FGM circular plate. Int J Non-Linear Mech 89:1–13

    Google Scholar 

  16. Rahul Saini, Roshan Lal (2020) Axisymmetric vibrations of temperature-dependent functionally graded moderately thick circular plates with two-dimensional material and temperature distribution. Eng Comput 4:1–16

    Google Scholar 

  17. Wang Qingshan, Shi Dongyan, Liang Qian, Shi Xianjie (2016) A unified solution for vibration analysis of functionally graded circular, annular and sector plates with general boundary conditions. Compos Part B Eng 88:264–294

    Google Scholar 

  18. Wang Yan Qing, Wan Yu He, Zhang Yu Fei (2017) Vibrations of longitudinally traveling functionally graded material plates with porosities. Eur J Mech-A/Solids 66:55–68

    MathSciNet  MATH  Google Scholar 

  19. Cong Pham Hong, Chien Trinh Minh, Khoa Nguyen Dinh, Duc Nguyen Dinh (2018) Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp Sci Technol 77:419–428

    Google Scholar 

  20. Zhu Lin-Feng, Ke Liao-Liang, Xiang Yang, Zhu Xin-Qun, Wang Yue-Sheng (2020) Vibrational power flow analysis of cracked functionally graded beams. Thin-Walled Struct 150:106626

    Google Scholar 

  21. Shen Hui-Shen, Wang Zhen-Xin (2014) Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. Int J Mech Sci 81:195–206

    Google Scholar 

  22. Jena Subrat Kumar, Chakraverty S, Malikan Mohammad (2020) Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation.” Engineering with Computers 1-21

  23. Sepahi O, Forouzan MR, Malekzadeh P (2011) Thermal buckling and postbuckling analysis of functionally graded annular plates with temperature-dependent material properties. Mater Design 32(7):4030–4041

    Google Scholar 

  24. Kiani Y, Eslami MR (2013) An exact solution for thermal buckling of annular FGM plates on an elastic medium. Compos Part B Eng 45(1):101–110

    Google Scholar 

  25. Ghiasian SE, Kiani Y, Sadighi M, Eslami MR (2014) Thermal buckling of shear deformable temperature dependent circular/annular FGM plates. Int J Mech Sci 81:137–148

    Google Scholar 

  26. Zhao Jing, Xie Fei, Wang Ailun, Shuai Cijun, Tang Jinyuan, Wang Qingshan (2019) Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints. Compos Part B Eng 159:20–43

    Google Scholar 

  27. Javani M, Kiani Y, Eslami MR (2019) Rapid heating vibrations of FGM annular sector plates. Engineering with Computers. 1-18

  28. Asadi H, Akbarzadeh AH, Wang Q (2015) Nonlinear thermo-inertial instability of functionally graded shape memory alloy sandwich plates. Compos Struct 120:496–508

    Google Scholar 

  29. Shen Hui-Shen, Wang Zhen-Xin (2010) Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations. Compos Struct 92(10):2517–2524

    Google Scholar 

  30. Chen Xiaochao, Chen Lunting, Huang Songbin, Li Ming, Li Xiao (2021) Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections. Appl Math Modelling 93:443–466

    MathSciNet  MATH  Google Scholar 

  31. Akbarzadeh AH, Abbasi M, Eslami MR (2012) Coupled thermoelasticity of functionally graded plates based on the third-order shear deformation theory. Thin-Walled Struct 53:141–155

    Google Scholar 

  32. Ghayesh Mergen H, Farokhi Hamed (2018) Mechanics of tapered axially functionally graded shallow arches. Compos Struct 188:233–241

    Google Scholar 

  33. Babaei H, Kiani Y, Eslami MR (2018) Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment. Thin-walled Struct 132:48–57

    Google Scholar 

  34. She Gui-Lin, Yuan Fuh-Gwo, Ren Yi-Ru (2017) Nonlinear analysis of bending, thermal buckling and post-buckling for functionally graded tubes by using a refined beam theory. Compos Struct 165:74–82

    Google Scholar 

  35. Bo Zhu, Xiao-Chao Chen, Yang Guo, Ying-Hui Li (2020) Static and dynamic characteristics of the post-buckling of fluid-conveying porous functionally graded pipes with geometric imperfections’’. Int J Mech Sci 189:105947

    Google Scholar 

  36. Lee Zonghoon, Ophus C, Fischer LM, Nelson-Fitzpatrick N, Westra KL, Evoy S, Radmilovic V, Dahmen U, Mitlin D (2006) Metallic NEMS components fabricated from nanocomposite Al-Mo films. Nanotechnology 17(12):3063

    Google Scholar 

  37. Ghayesh Mergen H, Farajpour Ali (2019) A review on the mechanics of functionally graded nanoscale and microscale structures. Int J Eng Sci 137:8–36

    MathSciNet  MATH  Google Scholar 

  38. Fu Yongqing, Hejun Du, Zhang Sam (2003) Functionally graded TiN/TiNi shape memory alloy films. Mater Lett 57(20):2995–2999

    Google Scholar 

  39. Lu CF, Lim Chee Wah, Chen WQ (2009) Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int J Solids Struct 46(5):1176–1185

    MATH  Google Scholar 

  40. Jia XL, Yang Jie, Kitipornchai Sritawat, Lim CW (2011) Forced vibration of electrically actuated FGM micro-switches. Proc Eng 14:280–287

    Google Scholar 

  41. Rahaeifard M, Kahrobaiyan MH, Ahmadian MT (2009) Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. In: International design engineering technical conferences and computers and information in engineering conference 49033:539–544

  42. Briscoe Joe, Dunn Steve (2015) Piezoelectric nanogenerators-a review of nanostructured piezoelectric energy harvesters. Nano Energy 14:15–29

    Google Scholar 

  43. Kim Hyun-Seung, Yang Yunzhi, Koh Jeong-Tae, Lee Kyung-Ku, Lee Doh-Jae, Lee Kwang-Min, Park Sang-Won (2009) Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing. J Biomed Mater Res Part B 88(2):427–435

    Google Scholar 

  44. Ann Witvrouw, Anshu Mehta (2005) The use of functionally graded poly-SiGe layers for MEMS applications. Materials science forum, vol 492. Trans Tech Publications Ltd, pp 255–260

    Google Scholar 

  45. Kerman Kian, Lai Bo-Kuai, Ramanathan Shriram (2012) Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv Energy Mater 2(6):656–661

    Google Scholar 

  46. Bafekrpour Ehsan, Simon George P, Habsuda Jana, Naebe Minoo, Yang Chunhui, Fox Bronwyn (2012) Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites. Mater Sci Eng A 545:123–131

    Google Scholar 

  47. Lam David CC, Yang Fan, Chong ACM, Wang Jianxun, Tong Pin (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    MATH  Google Scholar 

  48. Salari Erfan, Vanini Seyed Ali Sadough, Ashoori Alireza (2020) Nonlinear thermal stability and snap-through buckling of temperature-dependent geometrically imperfect graded nanobeams on nonlinear elastic foundation. Mater Res Exp 6(12):1250j6

    Google Scholar 

  49. Yang FACM, Chong ACM, Lam David Chuen Chun, Tong Pin (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    MATH  Google Scholar 

  50. Eringen A Cemal (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Google Scholar 

  51. Eringen A Cemal (2002) Nonlocal continuum field theories. Springer Science and Business Media

    MATH  Google Scholar 

  52. Gurtin Morton E, Ian Murdoch A (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    MathSciNet  MATH  Google Scholar 

  53. Fan Fan, Cai Xiumei, Sahmani Saeid, Safaei Babak (2021) Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Compos Struct 262:113604

    Google Scholar 

  54. Sahmani Saeid, Safaei Babak (2021) Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect. Appl Math Modelling 89:1792–1813

    MathSciNet  MATH  Google Scholar 

  55. Roudbari Mir Abbas, Jorshari Tahereh Doroudgar, LÜ Chaofeng, Ansari Reza, Kouzani Abbas Z, Amabili Marco (2022) A review of size-dependent continuum mechanics models for micro-and nano-structures. Thin-Walled Struct 170:108562

    Google Scholar 

  56. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    MathSciNet  MATH  Google Scholar 

  57. Yuan Yuan, Zhao Xiaotian, Zhao Yafei, Sahmani Saeid, Safaei Babak (2021) Dynamic stability of nonlocal strain gradient FGM truncated conical microshells integrated with magnetostrictive facesheets resting on a nonlinear viscoelastic foundation. Thin-Walled Struct 159:107249

    Google Scholar 

  58. Chen Shan-Xiang, Sahmani Saeid, Safaei Babak (2021) Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling. Eng Comput 37(2):1657–1678

    Google Scholar 

  59. Fan Fan, Sahmani Saeid, Safaei Babak (2021) Isogeometric nonlinear oscillations of nonlocal strain gradient PFGM micro/nano-plates via NURBS-based formulation. Compos Struct 255:112969

    Google Scholar 

  60. Tao Chang, Dai Ting (2021) Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates. Eur J Mech-A/Solids 86:104171

    MathSciNet  MATH  Google Scholar 

  61. Thai Huu-Tai, Vo Thuc P, Nguyen Trung-Kien, Kim Seung-Eock (2017) A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos Struct 177:196–219

    Google Scholar 

  62. Komijani M, Esfahani SE, Reddy JN, Liu YP, Eslami MR (2014) Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure-dependent functionally graded beams resting on elastic foundation. Compos Struct 112:292–307

    Google Scholar 

  63. Li Hui-Cui, Ke Liao-Liang (2021) Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid. Thin-Walled Struct 161:107432

    Google Scholar 

  64. Le Thanh Cuong, NguyenTrong Nghia, Vu Truong Huu, Khatir Samir, Wahab Magd Abdel (2020) A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate. Engineering with Computers 1-12

  65. Reddy JN, Romanoff Jani, Loya Jose Antonio (2016) Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory. Eur J Mech-A/Solids 56:92–104

    MathSciNet  MATH  Google Scholar 

  66. Ashoori AR, Sadough Vanini SA (2017) Nonlinear bending, postbuckling and snap-through of circular size-dependent functionally graded piezoelectric plates. Thin-Walled Struct 111:19–28

    MATH  Google Scholar 

  67. Ashoori AR, Sadough Vanini SA (2016) Nonlinear thermal stability and snap-through behavior of circular microstructure-dependent FGM plates. Eur J Mech-A/Solids 59:323–332

    MathSciNet  MATH  Google Scholar 

  68. Ashoori AR, Sadough Vanini SA (2017) Vibration of circular functionally graded piezoelectric plates in pre-/postbuckled configurations of bifurcation/limit load buckling. Acta Mech 228(9):2945–2964

    MathSciNet  MATH  Google Scholar 

  69. Thanh Cuong-Le, Tran Loc V, Bui Tinh Quoc, Nguyen Hoang X, Abdel-Wahab Magd (2019) Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates. Compos Struct 221:110838

    Google Scholar 

  70. Genao Francisco Yapor, Kim Jinseok, Zur Krzysztof Kamil (2020) Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads. Compos Struct 256:112931

    Google Scholar 

  71. Fan Lingjiao, Sahmani Saeid, Safaei Babak (2021) Couple stress-based dynamic stability analysis of functionally graded composite truncated conical microshells with magnetostrictive facesheets embedded within nonlinear viscoelastic foundations. Eng Comput 37(2):1635–1655

    Google Scholar 

  72. Ebrahimi Farzad, Salari Erfan (2015) Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos Part B Eng 78:272–290

    Google Scholar 

  73. Ebrahimi Farzad, Salari Erfan (2016) Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams. Mech Adv Mater Struct 23(12):1379–1397

    Google Scholar 

  74. Fang Jianshi, Zheng Shuo, Xiao Jianqiang, Zhang Xiaopeng (2020) Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerosp Sci Technol 106:106146

    Google Scholar 

  75. Tran Van-Ke, Pham Quoc-Hoa, Nguyen-Thoi Trung (2020) A finite element formulation using four-unknown incorporating nonlocal theory for bending and free vibration analysis of functionally graded nanoplates resting on elastic medium foundations. Engineering with Computers 1-26

  76. Jalaei Mohammad Hossein, Thai Huu-Tai (2019) Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos Part B Eng 175:107164

    Google Scholar 

  77. Bedroud Mohammad, Hosseini-Hashemi Shahrokh, Valixani Mohammad, Nazemnezhad R (2016) Buckling of FG circular/annular Mindlin nanoplates with an internal ring support using nonlocal elasticity. Appl Math Modelling 40(4):3185–3210

    MathSciNet  MATH  Google Scholar 

  78. Ashoori AR, Salari E, Sadough Vanini SA (2016) Size-dependent thermal stability analysis of embedded functionally graded annular nanoplates based on the nonlocal elasticity theory. Int J Mech Sci 119:396–411

    Google Scholar 

  79. Salari Erfan, Ashoori Alireza, Vanini Seyed Ali Sadough (2019) Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate. Adv Nano Res 7(1):25

    Google Scholar 

  80. Liu Hu, Lv Zheng, Tang Haijun (2019) Nonlinear vibration and instability of functionally graded nanopipes with initial imperfection conveying fluid. Appl Math Modelling 76:133–150

    MathSciNet  MATH  Google Scholar 

  81. Salari E, Sadough Vanini SA (2021) Investigation of thermal preloading and porosity effects on the nonlocal nonlinear instability of FG nanobeams with geometrical imperfection. Eur J Mech-A/Solids 86:104183

    MathSciNet  MATH  Google Scholar 

  82. Sahmani Saeid, Safaei Babak (2020) Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl Math Modelling 82:336–358

    MathSciNet  MATH  Google Scholar 

  83. Srividhya S, Raghu P, Rajagopal Amirtham, Reddy JN (2018) Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory. Int J Eng Sci 125:1–22

    MathSciNet  MATH  Google Scholar 

  84. Phung-Van Phuc, Ferreira AJM, Nguyen-Xuan H, Abdel Wahab M (2017) An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Compos Part B Eng 118:125–134

    Google Scholar 

  85. Phung-Van Phuc, Thai Chien H, Nguyen-Xuan H, Abdel Wahab M (2019) Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Compos Part B Eng 164:215–225

    Google Scholar 

  86. Zhang Zhiwei, Pusateri Simon, Xie Binglin, Nan Hu (2020) Tunable energy trapping through contact-induced snap-through buckling in strips with programmable imperfections. Extreme Mech Lett 37:100732

    Google Scholar 

  87. Wu Zhangming, Li Hao, Friswell Michael I (2018) Advanced nonlinear dynamic modelling of bi-stable composite plates. Compos Struct 201:582–596

    Google Scholar 

  88. Cao Yunteng, Derakhshani Masoud, Fang Yuhui, Huang Guoliang, Cao Changyong (2021) Bistable structures for advanced functional systems. Adv Funct Mater 31(45):2106231

    Google Scholar 

  89. Qiu Jin, Lang Jeffrey H, Slocum Alexander H (2004) A curved-beam bistable mechanism. J Microelectromech Syst 13(2):137–146

    Google Scholar 

  90. Yao Hongliang, Wang Yuwei, Xie Linqing, Wen Bangchun (2020) Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech Syst Signal Process 138:106546

    Google Scholar 

  91. Tao Jixiao, He Xiaoqiao, Yi Shenghui, Deng Yajie (2019) Broadband energy harvesting by using bistable FG-CNTRC plate with integrated piezoelectric layers. Smart Mater Struct 28(9):095021

    Google Scholar 

  92. Reddy JN, Chin CD (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stress 21(6):593–626

    Google Scholar 

  93. Reddy Junuthula Narasimha (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press

    Google Scholar 

  94. Reddy Junuthula Narasimha (2015) An Introduction to Nonlinear Finite Element Analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. Oxford University Press, USA

    Google Scholar 

  95. Crisfield Michael A (1981) A fast incremental/iterative solution procedure that handles “snap-through.” Computational methods in nonlinear structural and solid mechanics. Pergamon, pp 55–62

    Google Scholar 

  96. Keleshteri MM, Jelovica J (2020) Nonlinear vibration behavior of functionally graded porous cylindrical panels. Compos Struct 239:112028

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Sadough Vanini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The entries of matrices given by Eq. 23 are computed as follows

$$\begin{aligned} M_{nm}^{uu}&=\int _{0}^{a}{\left[ {{I}_{0}}rN_{m}^{u}N_{n}^{u}+\mu {{I}_{0}}r\frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{u}}{\text {d}r} \right] }\,\text {d}r \\ M_{nm}^{uw}&=\int _{0}^{a}{\left[ -{{I}_{1}}r\frac{\text {d}N_{m}^{w}}{\text {d}r}N_{n}^{u}-\mu {{I}_{1}}r\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{\text {d}N_{n}^{u}}{\text {d}r} \right] }\,\text {d}r \\ M_{nm}^{wu}&=\int _{0}^{a}\left[ -{{I}_{1}}rN_{m}^{u} \frac{\text {d}N_{n}^{w}}{\text {d}r} -\mu {{I}_{1}}r\frac{\text {d}N_{m}^{u}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\right. \\&\quad -\mu {{I}_{1}}N_{m}^{u}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}-\mu {{I}_{1}}\frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} -\mu \frac{{{I}_{1}}}{r}N_{m}^{u}\frac{\text {d} N_{n}^{w}}{\text {d}r} \\&\quad +\mu {{I}_{0}}r\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) N_{m}^{u} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} +\mu {{I}_{0}}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \\&\quad N_{m}^{u}\frac{\text {d}N_{n}^{w}}{\text {d}r} +{{\mu }^{2}}{{I}_{0}}r\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +\left. {{\mu }^{2}}{{I}_{0}} \left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} +\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \right] \,\text {d}r \\ M_{nm}^{ww}&=\int _{0}^{a}\left[ {{I}_{0}}rN_{m}^{w}N_{n}^{w} -\mu {{I}_{0}}rN_{m}^{w}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}-\mu {{I}_{0}}N_{m}^{w}\frac{\text {d} N_{n}^{w}}{\text {d}r}\right. \\&\quad +{{I}_{2}}r\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{I}_{2}}r\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +\mu {{I}_{2}}\frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} +\mu {{I}_{2}}\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +\mu \frac{{{I}_{2}}}{r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} -\mu {{I}_{1}}r\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}} N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -\mu {{I}_{1}}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}-{{\mu }^{2}}{{I}_{1}}r \left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} +\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}}\right) \\&\quad \left. \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} -{{\mu }^{2}}{{I}_{1}}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{\text {d}N_{n}^{w}}{\text {d}r}\right] \,\text {d}r \\ \end{aligned}$$
$$\begin{aligned} K_{nm}^{uu}&=\int _{0}^{a}\left[ {{A}_{11}}r \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{u}}{\text {d}r}+{{A}_{12}}N_{m}^{u}\frac{\text {d}N_{n}^{u}}{\text {d}r}\right. \\&\qquad \left. +{{A}_{12}}\frac{\text {d}N_{m}^{u}}{\text {d}r} N_{n}^{u}+\frac{{{A}_{22}}}{r}N_{m}^{u}N_{n}^{u} \right] \,\text {d}r \\ K_{nm}^{uw}&=\int _{0}^{a}\left[ \frac{{{A}_{11}}}{2}r \frac{\partial w}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{u}}{\text {d}r} +{{A}_{11}}r\frac{\partial {{w}^{*}}}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{u}}{\text {d}r}\right. \\&\quad -{{B}_{11}}r\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{\text {d}N_{n}^{u}}{\text {d}r} -{{B}_{12}}\frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{u}}{\text {d}r}\\&\quad +\frac{{{A}_{12}}}{2}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}N_{n}^{u}+{{A}_{12}} \frac{\partial {{w}^{*}}}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}N_{n}^{u}\\&\quad \left. -{{B}_{12}}\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}N_{n}^{u}-\frac{{{B}_{22}}}{r} \frac{\text {d}N_{m}^{w}}{\text {d}r}N_{n}^{u} \right] \,\text {d}r\\ K_{nm}^{wu}&=\int _{0}^{a}\left[ {{A}_{11}}r\left( \frac{\partial w}{\partial r}+\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}\right. \\&\quad +\mu {{A}_{11}}r\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +\mu {{A}_{11}} \left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} +\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}}\right) \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +{{A}_{12}}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) N_{m}^{u} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +\mu {{A}_{12}}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) N_{m}^{u} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{12}}}{r}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) N_{m}^{u} \frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +\mu {{A}_{12}}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{12}}}{r}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +\mu \frac{{{A}_{22}}}{r}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) N_{m}^{u} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +\mu \frac{{{A}_{22}}}{{{r}^{2}}} \left( \frac{\partial w}{\partial r}+\frac{\partial {{w}^{*}}}{\partial r} \right) N_{m}^{u}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -{{B}_{11}}r\frac{\text {d}N_{m}^{u}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} -{{B}_{12}}N_{m}^{u}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad \left. -{{B}_{12}}\frac{\text {d}N_{m}^{u}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} -\frac{{{B}_{22}}}{r}N_{m}^{u}\frac{\text {d}N_{n}^{w}}{\text {d}r} \right] \,\text {d}r\\ \end{aligned}$$
$$\begin{aligned} K_{nm}^{ww}&=\int _{0}^{a}\left[ \frac{{{A}_{11}}}{2}r \left( {{\left( \frac{\partial w}{\partial r} \right) }^{2}} +\frac{\partial w}{\partial r}\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\right. \\&\quad +\mu \frac{{{A}_{11}}}{2}r \frac{\partial w}{\partial r}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{11}}}{2}\frac{\partial w}{\partial r} \left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} +\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}}\right) \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +{{A}_{11}}r\left( \frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r} +{{\left( \frac{\partial {{w}^{*}}}{\partial r}\right) }^{2}}\right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +\mu {{A}_{11}}r\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}\frac{\partial {{w}^{*}}}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}} N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu {{A}_{11}}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}\frac{\partial {{w}^{*}}}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}}\right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad -{{B}_{11}}r\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -\mu {{B}_{11}}r \left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{{{\text {d}}^{2}} N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{{{\text {d}}^{2}} N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -\mu {{B}_{11}}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} +\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad -{{B}_{12}}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -\mu {{B}_{12}}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -\mu \frac{{{B}_{12}}}{r}\left( \frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}+\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +\mu \frac{{{A}_{12}}}{2}\left( {{\left( \frac{\partial w}{\partial r} \right) }^{2}}+\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{12}}}{2r}\left( {{\left( \frac{\partial w}{\partial r} \right) }^{2}}+\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +\mu {{A}_{12}}\left( \frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r} +{{\left( \frac{\partial {{w}^{*}}}{\partial r} \right) }^{2}} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{12}}}{r}\left( \frac{\partial w}{\partial r}\frac{\partial {{w}^{*}}}{\partial r} +{{\left( \frac{\partial {{w}^{*}}}{\partial r}\right) }^{2}}\right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad -\mu {{B}_{12}}\left( \frac{\partial w}{\partial r} +\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -\mu \frac{{{B}_{12}}}{r}\left( \frac{\partial w}{\partial r}+\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -\mu \frac{{{B}_{22}}}{r}\left( \frac{\partial w}{\partial r}+\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}} N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad -\mu \frac{{{B}_{22}}}{{{r}^{2}}} \left( \frac{\partial w}{\partial r}+\frac{\partial {{w}^{*}}}{\partial r} \right) \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -\frac{{{B}_{11}}}{2}r \frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}} N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -{{B}_{11}}r \frac{\partial {{w}^{*}}}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} +{{D}_{11}}r\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +{{D}_{12}}\frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} -\frac{{{B}_{12}}}{2}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -{{B}_{12}}\frac{\partial {{w}^{*}}}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}+{{D}_{12}}\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad \left. +\frac{{{D}_{22}}}{r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \right] \,\text {d}r \\ \end{aligned}$$
$$\begin{aligned} \tilde{K}_{nm}^{uu}& =0,\quad \tilde{K}_{nm}^{uw}=0, \quad \tilde{K}_{nm}^{wu}=0 \\ \tilde{K}_{nm}^{ww}&=\int _{0}^{a}\left[ {{N}^{T}}r \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{N}^{T}}r\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\right. \\&\quad +\mu {{N}^{T}} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r}+\mu {{N}^{T}} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad \left. +\mu \frac{{{N}^{T}}}{r}\frac{\text {d} N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \right] \,\text {d}r \\ F_{n}^{u}&=\int _{0}^{a}\left[ {{N}^{T}}r \frac{\text {d}N_{n}^{u}}{\text {d}r}+{{N}^{T}}N_{n}^{u} \right] \,\text {d}r \\ F_{n}^{w}&=\int _{0}^{a}\left[ {{N}^{T}}r\frac{\partial {{w}^{*}}}{\partial r}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{N}^{T}}r\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\right. \\&\quad +\mu {{N}^{T}}\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{N}^{T}}\frac{\partial {{w}^{*}}}{\partial r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +\mu \frac{{{N}^{T}}}{r}\frac{\partial {{w}^{*}}}{\partial r} \frac{\text {d}N_{n}^{w}}{\text {d}r} -{{M}^{T}}r\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} -{{M}^{T}}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad \left. +qrN_{n}^{w}-\mu qr\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}-\mu q\frac{\text {d}N_{n}^{w}}{\text {d}r}\right] \,\text {d}r \end{aligned}$$
$$\begin{aligned} \tilde{K}_{nm}^{uu}& =0,\quad \tilde{K}_{nm}^{uw}=0, \quad \tilde{K}_{nm}^{wu}=0 \\ \tilde{K}_{nm}^{ww}&=\int _{0}^{a}\left[ {{N}^{T}}r \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{N}^{T}}r\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\right. \\&\quad +\mu {{N}^{T}} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r}+\mu {{N}^{T}} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad \left. +\mu \frac{{{N}^{T}}}{r}\frac{\text {d} N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \right] \,\text {d}r \\ F_{n}^{u}&=\int _{0}^{a}\left[ {{N}^{T}}r \frac{\text {d}N_{n}^{u}}{\text {d}r}+{{N}^{T}}N_{n}^{u} \right] \,\text {d}r \\ F_{n}^{w}&=\int _{0}^{a}\left[ {{N}^{T}}r\frac{\partial {{w}^{*}}}{\partial r}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{N}^{T}}r\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\right. \\&\quad +\mu {{N}^{T}}\frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{N}^{T}}\frac{\partial {{w}^{*}}}{\partial r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +\mu \frac{{{N}^{T}}}{r}\frac{\partial {{w}^{*}}}{\partial r} \frac{\text {d}N_{n}^{w}}{\text {d}r} -{{M}^{T}}r\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} -{{M}^{T}}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad \left. +qrN_{n}^{w}-\mu qr\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}-\mu q\frac{\text {d}N_{n}^{w}}{\text {d}r}\right] \,\text {d}r \end{aligned}$$

Appendix B

The entries of the tangent stiffness matrix introduced by Eq. 29 are determined as follows

$$\begin{aligned} T_{nm}^{uu}&=K_{nm}^{uu} \\ T_{nm}^{uw}&=K_{nm}^{uw}+\int _{0}^{a}\\&\quad \left[ \frac{{{A}_{11}}}{2}r\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{u}}{\text {d}r} +\frac{{{A}_{12}}}{2}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}N_{n}^{u} \right] \,\text {d}r \\ T_{nm}^{wu}&=K_{nm}^{wu} \\ \end{aligned}$$
$$\begin{aligned} T_{nm}^{ww}&=K_{nm}^{ww}-\tilde{K}_{nm}^{ww}+\int _{0}^{a}\\&\quad \left[ {{A}_{11}}r\frac{\partial u}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}+\mu {{A}_{11}}r\frac{\partial u}{\partial r} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \right. \\&\quad +\mu {{A}_{11}}\frac{\partial u}{\partial r} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r} +{{A}_{12}}u\frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +\mu {{A}_{12}}u \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}+\mu \frac{{{A}_{12}}}{r}u \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +\mu {{A}_{12}} \frac{\partial u}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} +\mu \frac{{{A}_{12}}}{r}\frac{\partial u}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +\mu \frac{{{A}_{22}}}{r}u\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} +\mu \frac{{{A}_{22}}}{{{r}^{2}}}u\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +{{A}_{11}} r{{\left( \frac{\partial w}{\partial r} \right) }^{2}} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\frac{{{A}_{11}}}{2}r\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +\mu \frac{{{A}_{11}}}{2}r\frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}} N_{n}^{w}}{\text {d}{{r}^{2}}} +\mu \frac{{{A}_{11}}}{2}r{{\left( \frac{\partial w}{\partial r} \right) }^{2}}\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{11}}}{2}r\frac{\partial w}{\partial r} \frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{11}}}{2}\frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu \frac{{{A}_{11}}}{2}{{\left( \frac{\partial w}{\partial r} \right) }^{2}}\frac{{{\text {d}}^{2}} N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +\mu \frac{{{A}_{11}}}{2}\frac{\partial w}{\partial r} \frac{{{\partial }^{2}}{{w}^{*}}}{\partial {{r}^{2}}} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r}+{{A}_{11}}r\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad +\mu {{A}_{11}}r\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} \\&\quad +\mu {{A}_{11}}\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r}\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{\text {d}N_{n}^{w}}{\text {d}r} -{{B}_{11}}r\frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -\mu {{B}_{11}}r\frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}\frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} -\mu {{B}_{11}}\frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r}\\&\quad -{{B}_{12}}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r} -\mu {{B}_{12}}\frac{\partial w}{\partial r} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -\mu \frac{{{B}_{12}}}{r}\frac{\partial w}{\partial r} \frac{{{\text {d}}^{2}}N_{m}^{w}}{\text {d}{{r}^{2}}} \frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{A}_{12}}{{\left( \frac{\partial w}{\partial r} \right) }^{2}} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{12}}}{2}\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}} +\mu \frac{{{A}_{12}}}{r}{{\left( \frac{\partial w}{\partial r} \right) }^{2}}\frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r} \\&\quad +\mu \frac{{{A}_{12}}}{2r}\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} +\mu {{A}_{12}}\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad +\mu \frac{{{A}_{12}}}{r}\frac{\partial w}{\partial r} \frac{\partial {{w}^{*}}}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} -\mu {{B}_{12}}\frac{{{\partial }^{2}}w}{\partial {{r}^{2}}} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -\mu \frac{{{B}_{12}}}{r}\frac{{{\partial }^{2}}w}{\partial {{r}^{2}}}\frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}-\mu \frac{{{B}_{22}}}{r} \frac{\partial w}{\partial r}\frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad -\mu \frac{{{B}_{22}}}{{{r}^{2}}}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r}\frac{\text {d}N_{n}^{w}}{\text {d}r} -\frac{{{B}_{11}}}{2}r\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{{{\text {d}}^{2}}N_{n}^{w}}{\text {d}{{r}^{2}}}\\&\quad \left. -\frac{{{B}_{12}}}{2}\frac{\partial w}{\partial r} \frac{\text {d}N_{m}^{w}}{\text {d}r} \frac{\text {d}N_{n}^{w}}{\text {d}r}\right] \,\text {d}r \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salari, E., Sadough Vanini, S.A. Small/large amplitude vibration, snap-through and nonlinear thermo-mechanical instability of temperature-dependent FG porous circular nanoplates. Engineering with Computers 39, 2295–2326 (2023). https://doi.org/10.1007/s00366-022-01629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01629-2

Keywords

Navigation