Abstract
Understanding the propagation of waves and their scattering characteristics is critical in various scientific and engineering domains. While the majority of present work is based on numerical approaches, their high computational cost and discontinuity in the entire engineering workflow raise the need to resolve obstacles for fully utilizing the methods in an interactive and end-to-end manner. In this study, we propose a deep learning approach that can simulate the wave propagation and scattering phenomena precisely and efficiently. In particular, we present methods of incorporating physics-based knowledge into the deep learning framework to give the learning process strong inductive biases regarding wave propagation and scattering behaviors. We demonstrate that the proposed method can successfully produce physically valid wave field trajectories induced by random scattering objects. We show that the proposed physics-informed strategy exhibits significantly improved prediction results than purely data-driven methods through quantitative and qualitative evaluation from various angles. Subsequently, we assess the computational efficiency of the proposed method as a neural engine, showing that the proposed approach can significantly accelerate the scientific simulation process compared to the numerical method. Our study delivers the potential of the proposed physics-informed approach to be utilized for real-time, accurate, and interactive scientific analyses in a wide variety of engineering and application disciplines.












Similar content being viewed by others
References
Kaina N, Lemoult F, Fink M, Lerosey G (2015) Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525(7567):77–81
Cai X, Wang L, Zhao Z, Zhao A, Zhang X, Wu T, Chen H (2016) The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters. Appl Phys Lett 109(13):131904
Cummer SA, Christensen J, Alù A (2016) Controlling sound with acoustic metamaterials. Nat Rev Mater 1(3):1–13
Bertolotti J, Van Putten EG, Blum C, Lagendijk A, Vos WL, Mosk AP (2012) Non-invasive imaging through opaque scattering layers. Nature 491(7423):232–234
Yeh H, Mehra R, Ren Z, Antani L, Manocha D, Lin M (2013) Wave-ray coupling for interactive sound propagation in large complex scenes. ACM Trans Graph 32(6):1–11
Mehra R, Rungta A, Golas A, Lin M, Manocha D (2015) Wave: Interactive wave-based sound propagation for virtual environments. IEEE Trans Vis Comput Graph 21(4):434–442
Watanabe K, Pisanò F, Jeremić B (2017) Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media. Eng Comput 33(3):519–545
Carrer J, Solheid B, Trevelyan J, Seaid M (2021) A boundary element method formulation based on the caputo derivative for the solution of the diffusion-wave equation. Eng Anal Bound Elem 122:1–18
Shirron JJ, Giddings TE (2006) A finite element model for acoustic scattering from objects near a fluid–fluid interface. Comput Methods Appl Mech Engrg 196(1–3):279–288
Yeung C, Ng CT (2019) Time-domain spectral finite element method for analysis of torsional guided waves scattering and mode conversion by cracks in pipes. Mech Syst Signal Process 128:305–317
Peake M, Trevelyan J, Coates G (2015) Extended isogeometric boundary element method (xibem) for three-dimensional medium-wave acoustic scattering problems. Comput Methods Appl Mech Engrg 284:762–780
Pulkki V, Svensson UP (2019) Machine-learning-based estimation and rendering of scattering in virtual reality. J Acoust Soc Am 145(4):2664–2676
Fan Z, Vineet V, Gamper H, Raghuvanshi N (2020) Fast acoustic scattering using convolutional neural networks. In: IEEE Int. Conf. Acoust. Speech Signal Process, pp 171–175
Tang Z, Meng H-Y, Manocha D (2021) Learning acoustic scattering fields for dynamic interactive sound propagation. In: IEEE Conf. Virtual Real. 3D User Interfaces, pp 835–844
Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A, Ganguly A, Shekhar S, Samatova N, Kumar V (2017) Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng 29(10):2318–2331
Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707
Arridge S, Maass P, Öktem O, Schönlieb C-B (2019) Solving inverse problems using data-driven models. Acta Numer 28:1–174
Lihua L (2021) Simulation physics-informed deep neural network by adaptive Adam optimization method to perform a comparative study of the system. Eng Comput. https://doi.org/10.1007/s00366-021-01301-1
Wessels H, Weißenfels C, Wriggers P (2020) The neural particle method-an updated lagrangian physics informed neural network for computational fluid dynamics. Comput Methods Appl Mech Engrg 368: 113127
Sahli Costabal F, Yang Y, Perdikaris P, Hurtado DE, Kuhl E (2020) Physics-informed neural networks for cardiac activation mapping. Front Phys 8:42
Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Engrg 361: 112732
Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mech 106:102447
Karimpouli S, Tahmasebi P (2020) Physics informed machine learning: seismic wave equation. Geosci Front 11(6):1993–2001
Moseley B, Markham A, Nissen-Meyer T (2020) Solving the wave equation with physics-informed deep learning. arXiv preprint arXiv:2006.11894
Shukla K, Di Leoni PC, Blackshire J, Sparkman D, Karniadakis GE (2020) Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks. J Nondestruct Eval 39(3):1–20
Alkhalifah T, Song C, bin Waheed U, Hao Q (2021) Wavefield solutions from machine learned functions constrained by the helmholtz equation. Artif Intell Geosci 2:11–19
Song C, Alkhalifah T, Waheed UB (2021) Solving the frequency-domain acoustic vti wave equation using physics-informed neural networks. Geophys J Int 225(2):846–859
Morse PM, Ingard KU (1986) Theoretical acoustics. Princeton University Press, New Jersey
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Int. Conf. Med. Image Comput. -Assist. Interv., Springer, pp 234–241
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z (2020) Designing phononic crystal with anticipated band gap through a deep learning based data-driven method. Comput Methods Appl Mech Engrg 361:112737
Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11):2579–2605
Acknowledgements
The research of S.Y.L, K.P, and S.L was supported by the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade, Industry and Energy of Korean government under Grant No. 19-CM-GU-01. The research of H.J.L was supported by Enhancement of Measurement Standards and Technologies in Physics funded by Korea Research Institute of Standards and Science (KRISS-2021-GP2021-0002). The authors would like to thank Dr. Wan-Ho Cho, Dr. In-Jee Jung and Dr. Jiho Chang for their helpful discussion concerning experiment and evaluation.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lee, S.Y., Park, CS., Park, K. et al. A Physics-informed and data-driven deep learning approach for wave propagation and its scattering characteristics. Engineering with Computers 39, 2609–2625 (2023). https://doi.org/10.1007/s00366-022-01640-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-022-01640-7