Skip to main content
Log in

Finite element implementation of ordinary state-based peridynamics with variable horizon

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study presents an ordinary state-based peridynamic (OSB PD) analysis within the finite-element framework while considering implicit/explicit solvers. The present PD formulation permits non-uniform discretization with a variable horizon and eliminates the use of external surface and volume correction factors. An implicit solver is employed until immediately before damage emerges, and then an adaptive time-stepping explicit solver for crack initiation and propagation. The major advantage of the present approach is the reduction in computational time. The PD interactions lead to a sparsely populated global stiffness matrix. The BiConjugate Gradient Stabilized (BICGSTAB) method is employed to determine the solution of the system equations. Damage onset and its evolution is investigated using the critical stretch criterion. The efficacy of the present approach is established by considering two different geometric configurations and loading/boundary conditions. The PD predictions for the crack patterns compare well with those of the analytical results and experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J Fract 171:65. https://doi.org/10.1007/s10704-011-9628-4

    Article  MATH  Google Scholar 

  2. Gui YJ, Yu Y, Hu YL, Zhang YT, Lei LW (2021) A peridynamic cohesive zone model for composite laminates. J Peridynamics Nonlocal Model. https://doi.org/10.1007/s42102-021-00052-3

    Article  MathSciNet  Google Scholar 

  3. Dorduncu M (2021) Peridynamic modeling of delaminations in laminated composite beams using refined zigzag theory. Theor Appl Fract Mech 112:102832. https://doi.org/10.1016/j.tafmec.2020.102832

    Article  Google Scholar 

  4. Amiri F, Anitescu C, Arroyo M, Bordas SPA, Rabczuk T (2014) XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Comput Mech 53:45–57. https://doi.org/10.1007/s00466-013-0891-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorduncu M, Barut A, Madenci E, Phan N (2017) Peridynamic augmented XFEM. In: 58th AIAA/ASCE/AHSASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2017-0656

  6. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184. https://doi.org/10.1007/s10659-007-9125-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Madenci E, Dorduncu M, Barut A, Phan N (2018) A state-based peridynamic analysis in a finite element framework. Eng Fract Mech 195:104–128. https://doi.org/10.1016/j.engfracmech.2018.03.033

    Article  Google Scholar 

  9. Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631. https://doi.org/10.1016/j.cma.2018.03.038

    Article  MathSciNet  MATH  Google Scholar 

  10. Javili A, Morasata R, Oterkus E, Oterkus S (2019) Peridynamics review. Math Mech Solids 24:3714–3739. https://doi.org/10.1177/1081286518803411

    Article  MathSciNet  MATH  Google Scholar 

  11. Isiet M, Mišković I, Mišković S (2021) Review of peridynamic modelling of material failure and damage due to impact. Int J Impact Eng 147:103740. https://doi.org/10.1016/j.ijimpeng.2020.103740

    Article  Google Scholar 

  12. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4614-8465-3

    Book  MATH  Google Scholar 

  13. Madenci E, Barut A, Dorduncu M (2019) Peridynamic differential operator for numerical analysis. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-02647-9

    Book  MATH  Google Scholar 

  14. Dorduncu M, Olmus I, Rabczuk T (2022) A peridynamic approach for modeling of two dimensional functionally graded plates. Compos Struct 279:114743. https://doi.org/10.1016/j.compstruct.2021.114743

    Article  Google Scholar 

  15. Silling S, Littlewood D, Seleson P (2015) Variable horizon in a peridynamic medium. J Mech Mater Struct 10:591–612. https://doi.org/10.2140/jomms.2015.10.591

    Article  MathSciNet  Google Scholar 

  16. Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D peridynamics. Int J Multiscale Comput Eng. https://doi.org/10.1615/IntJMultCompEng.2011002793

    Article  Google Scholar 

  17. Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2016) Dependence of crack paths on the orientation of regular 2D peridynamic grids. Eng Fract Mech 160:248–263. https://doi.org/10.1016/j.engfracmech.2016.03.022

    Article  Google Scholar 

  18. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782. https://doi.org/10.1016/j.cma.2016.12.031

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang Y, Yang X, Wang X, Zhuang X (2021) A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements. Theor Appl Fract Mech 113:102930. https://doi.org/10.1016/j.tafmec.2021.102930

    Article  Google Scholar 

  20. Hu Y, Chen H, Spencer BW, Madenci E (2018) Thermomechanical peridynamic analysis with irregular non-uniform domain discretization. Eng Fract Mech 197:92–113. https://doi.org/10.1016/j.engfracmech.2018.02.006

    Article  Google Scholar 

  21. Madenci E, Dorduncu M, Barut A, Futch M (2017) Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator. Numer Methods Partial Differ Equ 33:1726–1753. https://doi.org/10.1002/num.22167

    Article  MathSciNet  MATH  Google Scholar 

  22. Dorduncu M, Kaya K, Ergin OF (2020) Peridynamic analysis of laminated composite plates based on first-order shear deformation theory. Int J Appl Mech 12(03):2050031. https://doi.org/10.1142/S1758825120500313

    Article  Google Scholar 

  23. Madenci E, Dorduncu M, Gu X (2019) Peridynamic least squares minimization. Comput Methods Appl Mech Eng 348:846–874. https://doi.org/10.1016/j.cma.2019.01.032

    Article  MathSciNet  MATH  Google Scholar 

  24. Dorduncu M (2020) Peridynamic modeling of adhesively bonded beams with modulus graded adhesives using refined zigzag theory. Int J Mech Sci 185:105866. https://doi.org/10.1016/j.ijmecsci.2020.105866

    Article  Google Scholar 

  25. Kilic B, Madenci E (2010) An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory. Theor Appl Fract Mech 53:194–204. https://doi.org/10.1016/j.tafmec.2010.08.001

    Article  Google Scholar 

  26. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43:1169–1178. https://doi.org/10.1016/j.finel.2007.08.012

    Article  MathSciNet  Google Scholar 

  27. Lall P, Shantaram S, Panchagade D (2010) Peridynamic-models using finite elements for shock and vibration reliability of leadfree electronics. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. https://doi.org/10.1109/ITHERM.2010.5501274

  28. Beckmann R, Mella R, Wenman MR (2013) Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus. Comput Methods Appl Mech Eng 263:71–80. https://doi.org/10.1016/j.cma.2013.05.001

    Article  MathSciNet  MATH  Google Scholar 

  29. Dorduncu M, Barut A, Madenci E (2015) Ordinary-State Based Peridynamic Truss Element. In: 56th AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2015-0465

  30. Dorduncu M, Barut A, Madenci E (2016) Peridynamic Truss Element for Viscoelastic Deformation. In: 57th AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2016-1721

  31. Diyaroglu C, Oterkus S, Oterkus E, Madenci E (2017) Peridynamic modeling of diffusion by using finite-element analysis. IEEE Trans Compon Packaging Manuf Technol 7(11):1823–1831. https://doi.org/10.1109/TCPMT.2017.2737522

    Article  Google Scholar 

  32. Fang G, Liu S, Fu M, Wang B, Wu Z, Liang J (2019) A method to couple state-based peridynamics and finite element method for crack propagation problem. Mech Res Commun 95:89–95. https://doi.org/10.1016/j.mechrescom.2019.01.005

    Article  Google Scholar 

  33. Zhang Y, Madenci E (2021) A coupled peridynamic and finite element approach in ANSYS framework for fatigue life prediction based on the kinetic theory of fracture. J Peridynamics Nonlocal Model. https://doi.org/10.1007/s42102-021-00055-0

    Article  Google Scholar 

  34. Zhang Y, Madenci E, Zhang Q (2022) ANSYS implementation of a coupled 3D peridynamic and finite element analysis for crack propagation under quasi-static loading. Eng Fract Mech 260:108179. https://doi.org/10.1016/j.engfracmech.2021.108179

    Article  Google Scholar 

  35. Madenci E, Barut A, Dorduncu M, Phan N (2018) Coupling of peridynamics with finite elements without an overlap zone. In: 2018 AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2018-1462

  36. Yang Z, Oterkus E, Nguyen CT, Oterkus S (2019) Implementation of peridynamic beam and plate formulations in finite element framework. Continuum Mech Thermodyn 31:301–315. https://doi.org/10.1007/s00161-018-0684-0

    Article  MathSciNet  Google Scholar 

  37. van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644. https://doi.org/10.1137/0913035

    Article  MathSciNet  MATH  Google Scholar 

  38. Zohdi TI (2013) Numerical simulation of the impact and deposition of charged particulate droplets. J Comput Phys 233:509–526. https://doi.org/10.1016/j.jcp.2012.09.012

    Article  MathSciNet  Google Scholar 

  39. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535. https://doi.org/10.1016/j.compstruc.2004.11.026

    Article  Google Scholar 

  40. Anderson TL (2017) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Boca Raton. https://doi.org/10.1201/9781315370293

    Book  MATH  Google Scholar 

  41. Winkler B, Hofstetter G, Niederwanger G (2001) Experimental verification of a constitutive model for concrete cracking. Proc Inst Mech Eng Part J Mater Des Appl 215:75–86. https://doi.org/10.1177/146442070121500202

    Article  Google Scholar 

  42. Meschke G, Dumstorff P (2007) Energy-based modeling of cohesive and cohesionless cracks via X-FEM. Comput Methods Appl Mech Eng 196:2338–2357. https://doi.org/10.1016/j.cma.2006.11.016

    Article  MATH  Google Scholar 

  43. Wang Y, Han F, Lubineau G (2021) Strength-induced peridynamic modeling and simulation of fractures in brittle materials. Comput Methods Appl Mech Eng 374:113558. https://doi.org/10.1016/j.cma.2020.113558

    Article  MathSciNet  MATH  Google Scholar 

  44. Mandal TK, Nguyen VP, Wu J-Y (2022) On a new high order phase field model for brittle and cohesive fracture: numerical efficiency, length scale convergence and crack kinking. Comput Mater Sci 203:111079. https://doi.org/10.1016/j.commatsci.2021.111079

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed as part of the ongoing research at the MURI Center for Material Failure Prediction through Peridynamics at the University of Arizona (AFOSR Grant No. FA9550-14-1-0073) and it was supported by Erciyes University Scientific Research Projects Coordination Unit (Grant No. 11070).

Funding

This work was funded by Erciyes Üniversitesi (Grant no. 11070); Air Force Research Laboratory (Grant no. FA9550-14-1-0073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Dorduncu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorduncu, M., Madenci, E. Finite element implementation of ordinary state-based peridynamics with variable horizon. Engineering with Computers 39, 641–654 (2023). https://doi.org/10.1007/s00366-022-01641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01641-6

Keywords