Skip to main content
Log in

Multi-adaptive coupling of finite element meshes with peridynamic grids: robust implementation and potential applications

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Coupling of methods based on the classical continuum mechanics (CCM), with peridynamic (PD) models is a recent hot topic in the realm of computational mechanics. In the coupled models, to optimize the usage of computational resources, usually the application of PD (the more demanding procedure) is restricted to critical areas of the domain affected by discontinuities such as propagating cracks. The remaining parts of the domain are described by a more efficient CCM-based model such as the finite element method (FEM). Here, we develop a coupled FEM/PD model for dynamic fracture modeling. The proposed method simultaneously features the following: (1) it can adaptively change the coupling configuration throughout the simulation such that only critical zones, on the verge of crack nucleation/propagation, are tackled by the PD procedure, and (2) it appropriately supports different grid spacing of PD and FEM parts. We refer to a model possessing both the features as multi-adaptive. This is crucial for a highly efficient coupling scheme. The performance of the proposed method is analyzed in terms of accuracy and computational efficiency through different numerical examples. The results show that the proposed method is superior to using a refined PD model, since it provides the same level of accuracy at a much lower computational cost. As a novel application, we present the promising results of a crack propagation problem in an unbounded domain, solved using classical artificial boundary conditions on an outer FEM layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Alhadeff A, Leon SE, Celes W, Paulino GH (2016) Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations. Eng Comput 32(3):533–552

    Google Scholar 

  2. Ballarini R, Diana V, Biolzi L, Casolo S (2018) Bond-based peridynamic modelling of singular and nonsingular crack-tip fields. Meccanica 53(14):3495–3515

    MathSciNet  Google Scholar 

  3. Bazazzadeh S, Mossaiby F, Shojaei A (2020) An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics. Eng Fract Mech 223:106708

    Google Scholar 

  4. Bazazzadeh S, Morandini M, Zaccariotto M, Galvanetto U (2021) Simulation of chemo-thermo-mechanical problems in cement-based materials with peridynamics. Meccanica 56(9):2357–2379. https://doi.org/10.1007/s11012-021-01375-7

    Article  MathSciNet  Google Scholar 

  5. Behzadinasab M, Foster JT (2019) The third sandia fracture challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal. Int J Fract 218(1–2):97–109

    Google Scholar 

  6. Belinha J, Azevedo J, Dinis LMDJS, Jorge RN (2018) Simulating fracture propagation in brittle materials using a meshless approach. Eng Comput 34(3):503–522

    Google Scholar 

  7. Bie Y, Cui X, Li Z (2018) A coupling approach of state-based peridynamics with node-based smoothed finite element method. Comput Methods Appl Mech Eng 331:675–700

    MathSciNet  MATH  Google Scholar 

  8. Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–98

    Google Scholar 

  9. Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Meth Eng 77(6):852–877

    MATH  Google Scholar 

  10. Bobaru F, Foster J, Geubelle P, Silling S (2016) Handbook of peridynamic modeling. Advances in applied mathematics. CRC Press, Boca Raton

    MATH  Google Scholar 

  11. Boroomand B, Mossaiby F (2006) Dynamic solution of unbounded domains using finite element method: discrete Green’s functions in frequency domain. Int J Numer Meth Eng 67(11):1491–1530

    MathSciNet  MATH  Google Scholar 

  12. Boys B, Dodwell T, Hobbs M, Girolami M (2021) PeriPy—a high performance OpenCL peridynamics package. Comput Methods Appl Mech Eng 386:114085

    MathSciNet  MATH  Google Scholar 

  13. Brothers MD, Foster JT, Millwater HR (2014) A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code. Comput Methods Appl Mech Eng 279:247–267

    MATH  Google Scholar 

  14. Diana V, Carvelli V (2020) An electromechanical micropolar peridynamic model. Comput Methods Appl Mech Eng 365:112998

    MathSciNet  MATH  Google Scholar 

  15. Diana V, Carvelli V (2021) A continuum-molecular model for anisotropic electrically conductive materials. Int J Mech Sci 211:106759. https://doi.org/10.1016/j.ijmecsci.2021.106759

    Article  Google Scholar 

  16. Diehl P, Jha P.K., Kaiser H, Lipton R, Levesque M (2018) Implementation of Peridynamics utilizing HPX—the C++ standard library for parallelism and concurrency. arXiv pp. arXiv–1806

  17. Diehl P, Prudhomme S, Lévesque M (2019) A review of benchmark experiments for the validation of peridynamics models. J Peridynam Nonlocal Model 1(1):14–35

    MathSciNet  Google Scholar 

  18. Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190(1–2):1–22

    Google Scholar 

  19. Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2016) Dependence of crack paths on the orientation of regular 2D peridynamic grids. Eng Fract Mech 160:248–263

    Google Scholar 

  20. Dipasquale D, Sarego G, Prapamonthon P, Yooyen S, Shojaei A (2022) A stress tensor-based failure criterion for ordinary state-based peridynamic models. J Appl Comput Mech 8:617–628

    Google Scholar 

  21. Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69:152–168

    Google Scholar 

  22. Du Q, Han H, Zhang J, Zheng C (2018) Numerical solution of a two-dimensional nonlocal wave equation on unbounded domains. SIAM J Sci Comput 40(3):A1430–A1445

    MathSciNet  MATH  Google Scholar 

  23. Elices M, Guinea G, Gomez J, Planas J (2002) The cohesive zone model: advantages, limitations and challenges. Eng Fract Mech 69(2):137–163

    Google Scholar 

  24. Engquist B, Majda A (1977) Absorbing boundary conditions for numerical simulation of waves. Proc Natl Acad Sci 74(5):1765–1766

    MathSciNet  MATH  Google Scholar 

  25. Fan H, Li S (2017) Parallel peridynamics-SPH simulation of explosion induced soil fragmentation by using OpenMP. Comput Particle Mech 4(2):199–211

    Google Scholar 

  26. Galvanetto U, Mudric T, Shojaei A, Zaccariotto M (2016) An effective way to couple FEM meshes and Peridynamics grids for the solution of static equilibrium problems. Mech Res Commun 76:41–47

    Google Scholar 

  27. Gao W, Chen X, Wang X, Hu C (2020) Novel strength reduction numerical method to analyse the stability of a fractured rock slope from mesoscale failure. Eng Comput:1–17

  28. Gu X, Zhang Q, Xia X (2017) Voronoi-based peridynamics and cracking analysis with adaptive refinement. Int J Numer Meth Eng 112(13):2087–2109

    MathSciNet  Google Scholar 

  29. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244

    MATH  Google Scholar 

  30. Han F, Lubineau G, Azdoud Y, Askari A (2016) A morphing approach to couple state-based peridynamics with classical continuum mechanics. Comput Methods Appl Mech Eng 301:336–358

    MathSciNet  MATH  Google Scholar 

  31. Hermann A, Shojaei A, Steglich D, Höche D, Zeller-Plumhoff B, Cyron CJ (2022) Combining peridynamic and finite element simulations to capture the corrosion of degradable bone implants and to predict their residual strength. Int J Mech Sci 220:107143

    Google Scholar 

  32. Higdon RL (1991) Absorbing boundary conditions for elastic waves. Geophysics 56(2):231–241

    Google Scholar 

  33. Lages EN, Paulino GH, Menezes IF, Silva RR (1999) Nonlinear finite element analysis using an object-oriented philosophy-application to beam elements and to the cosserat continuum. Eng Comput 15(1):73–89

    Google Scholar 

  34. Le Q, Bobaru F (2018) Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61(4):499–518

    MathSciNet  MATH  Google Scholar 

  35. Lubineau G, Azdoud Y, Han F, Rey C, Askari A (2012) A morphing strategy to couple non-local to local continuum mechanics. J Mech Phys Solids 60(6):1088–1102

    MathSciNet  Google Scholar 

  36. Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631

    MathSciNet  MATH  Google Scholar 

  37. Mattesi V, Darbas M, Geuzaine C (2019) A high-order absorbing boundary condition for 2D time-harmonic elastodynamic scattering problems. Comput Math Appl 77(6):1703–1721

    MathSciNet  MATH  Google Scholar 

  38. Mossaiby F, Shojaei A, Zaccariotto M, Galvanetto U (2017) OpenCL implementation of a high performance 3D Peridynamic model on graphics accelerators. Comput Math Appl 74(8):1856–1870

    MathSciNet  MATH  Google Scholar 

  39. Mossaiby F, Shojaei A, Boroomand B, Zaccariotto M, Galvanetto U (2020) Local dirichlet-type absorbing boundary conditions for transient elastic wave propagation problems. Comput Methods Appl Mech Eng 362:112856

    MathSciNet  MATH  Google Scholar 

  40. Ni T, Zaccariotto M, Zhu QZ, Galvanetto U (2019) Static solution of crack propagation problems in peridynamics. Comput Methods Appl Mech Eng 346:126–151

    MathSciNet  MATH  Google Scholar 

  41. Ongaro G, Seleson P, Galvanetto U, Ni T, Zaccariotto M (2021) Overall equilibrium in the coupling of peridynamics and classical continuum mechanics. Comput Methods Appl Mech Eng 381:113515. https://doi.org/10.1016/j.cma.2020.113515

    Article  MathSciNet  MATH  Google Scholar 

  42. Ozdemir M, Oterkus S, Oterkus E, Amin I, Nguyen CT, Tanaka S, El-Aassar A, Shawky H (2021) Evaluation of dynamic behaviour of porous media including micro-cracks by ordinary state-based peridynamics. Eng Comput. https://doi.org/10.1007/s00366-021-01506-4

    Article  Google Scholar 

  43. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61(13):2316–2343

    MATH  Google Scholar 

  44. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(29–30):2777–2799

    MathSciNet  MATH  Google Scholar 

  45. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199(37–40):2437–2455

    MATH  Google Scholar 

  46. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Meth Eng 108(12):1451–1476

    MathSciNet  Google Scholar 

  47. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    MathSciNet  MATH  Google Scholar 

  48. Ren H, Zhuang X, Rabczuk T (2020) Nonlocal operator method with numerical integration for gradient solid. Comput Struct 233:106235

    Google Scholar 

  49. Roy P, Pathrikar A, Deepu S, Roy D (2017) Peridynamics damage model through phase field theory. Int J Mech Sci 128:181–193

    Google Scholar 

  50. Seleson P, Beneddine S, Prudhomme S (2013) A force-based coupling scheme for peridynamics and classical elasticity. Comput Mater Sci 66:34–49

    Google Scholar 

  51. Shojaei A, Hermann A,  Seleson P,  Cyron CJ (2020) Dirichlet absorbing boundary conditions for classical and peridynamic diffusion-type models. Comput Mech 66(4):773–793

  52. Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis. Int J Mech Sci 119:419–431

    Google Scholar 

  53. Shojaei A, Zaccariotto M, Galvanetto U (2017) Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behaviour. Eng Comput

  54. Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2018) An adaptive multi-grid peridynamic method for dynamic fracture analysis. Int J Mech Sci 144:600–617

    Google Scholar 

  55. Shojaei A, Galvanetto U, Rabczuk T, Jenabi A, Zaccariotto M (2019) A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput Methods Appl Mech Eng 343:100–126

    MathSciNet  MATH  Google Scholar 

  56. Shojaei A, Mossaiby F, Zaccariotto M, Galvanetto U (2019) A local collocation method to construct dirichlet-type absorbing boundary conditions for transient scalar wave propagation problems. Comput Methods Appl Mech Eng 356:629–651

    MathSciNet  MATH  Google Scholar 

  57. Shojaei A, Hermann A, Cyron CJ, Seleson P, Silling SA (2022) A hybrid meshfree discretization to improve the numerical performance of peridynamic models. Comput Methods Appl Mech Eng 391:114544

    MathSciNet  MATH  Google Scholar 

  58. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  MATH  Google Scholar 

  59. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Google Scholar 

  60. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    MathSciNet  MATH  Google Scholar 

  61. Silling S, Littlewood D, Seleson P (2015) Variable horizon in a peridynamic medium. J Mech Mater Struct 10(5):591–612

    MathSciNet  Google Scholar 

  62. Source code for coupled FEM-PD solver, https://doi.org/10.6084/m9.figshare.19187735

  63. Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Meth Eng 48(11):1549–1570

    MATH  Google Scholar 

  64. Sun W, Fish J (2019) Superposition-based coupling of peridynamics and finite element method. Comput Mech 64(1):231–248

    MathSciNet  MATH  Google Scholar 

  65. Wang L, Chen Y, Xu J, Wang J (2017) Transmitting boundary conditions for 1D peridynamics. Int J Numer Meth Eng 110(4):379–400

    MathSciNet  MATH  Google Scholar 

  66. Wang X, Kulkarni SS, Tabarraei A (2019) Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems. Comput Methods Appl Mech Eng 344:251–275

    MathSciNet  MATH  Google Scholar 

  67. Wang Y, Zhou X, Zhang T (2019) Size effect of thermal shock crack patterns in ceramics: insights from a nonlocal numerical approach. Mech Mater 137:103133

    Google Scholar 

  68. Weckner O, Abeyaratne R (2005) The effect of long-range forces on the dynamics of a bar. J Mech Phys Solids 53(3):705–728

    MathSciNet  MATH  Google Scholar 

  69. Wildman RA, Gazonas GA (2013) A perfectly matched layer for peridynamics in two dimensions. J Mech Mater Struct 7(8):765–781

    Google Scholar 

  70. Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190(1–2):39–52

    Google Scholar 

  71. Yu Y, Bargos FF, You H, Parks ML, Bittencourt ML, Karniadakis GE (2018) A partitioned coupling framework for peridynamics and classical theory: analysis and simulations. Comput Methods Appl Mech Eng 340:905–931

    MathSciNet  MATH  Google Scholar 

  72. Yu K, Xin X, Lease KB (2010) A new method of adaptive integration with error control for bond-based peridynamics. In: Proceedings of the world congress on engineering and computer science, vol 2, pp 1041–1046

  73. Zaccariotto M, Tomasi D, Galvanetto U (2017) An enhanced coupling of PD grids to FE meshes. Mech Res Commun 84:125–135

    Google Scholar 

  74. Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of FEM meshes with Peridynamic grids. Comput Methods Appl Mech Eng 330:471–497

    MathSciNet  MATH  Google Scholar 

  75. Zaccariotto M, Shojaei A, Galvanetto U (2021) Chapter 6—coupling of CCM and PD in a meshless way. In: Oterkus E, Oterkus S, Madenci E (eds) Peridynamic modeling, numerical techniques, and applications. Elsevier series in mechanics of advanced materials, Elsevier, pp 113–138. https://doi.org/10.1016/B978-0-12-820069-8.00014-7

  76. Zhang W, Yang J, Zhang J, Du Q (2017) Artificial boundary conditions for nonlocal heat equations on unbounded domain. Commun Comput Phys 21(1):16–39

    MathSciNet  MATH  Google Scholar 

  77. Zhang J, Yu T, Bui TQ (2021) An adaptive XIGA with locally refined NURBS for modeling cracked composite FG Mindlin-Reissner plates. Eng Comput. https://doi.org/10.1007/s00366-021-01334-6

    Article  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-470246804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Mossaiby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mossaiby, F., Sheikhbahaei, P. & Shojaei, A. Multi-adaptive coupling of finite element meshes with peridynamic grids: robust implementation and potential applications. Engineering with Computers 39, 2807–2828 (2023). https://doi.org/10.1007/s00366-022-01656-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01656-z

Keywords

Navigation