Skip to main content
Log in

Finite volume scheme for the lattice Boltzmann method on curved surfaces in 3D

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The fluid flows on the surface widely exist in the natural world, such as the atmospherical circulation on a planet. In this study, we present a finite volume lattice Boltzmann method (LBM) for simulating fluid flows on curved surfaces in three-dimensional (3D) space. The curved surfaces are discretized using unstructured triangular meshes. We choose the D3Q19 lattice and the triangular meshes for the velocity and spatial discretizations, respectively. In one time iteration, we only need to compute the distribution functions on each vertex in a fully explicit form. Therefore, our proposed method is highly efficient for solving fluid flows on curved surfaces using LBM. To keep the velocity field tangential to the surfaces, a practical velocity correction technique is adopted. We perform a series of computational experiments on various curved surfaces such as sphere, torus, and bunny to demonstrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reuther S, Voigt A (2018) Solving the incompressible surface Navier-Stokes equation by surface finite elements. Phys Fluids 30:012107

    Google Scholar 

  2. Mohamed MS, Hirani AN, Samtaney R (2016) Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes. J Comput Phys 312(1):175–191

    MathSciNet  MATH  Google Scholar 

  3. Nitschke I, Reuther S, Voigt A (2017) Discrete exterior calculus (DEC) for the surface Navier-Stokes equation. Transport processes at fluidic interfaces. Birkhäuser, Cham, pp 177–197

    Google Scholar 

  4. Nitschke I, Voigt A, Wensch J (2012) A finite element approach to incompressible two-phase flow on manifolds. J Fluid Mech 708:418–438

    MathSciNet  MATH  Google Scholar 

  5. Reuther S, Voigt A (2015) The interplay of curvature and vortices in flow on curved surfaces. Multiscale Model Simul 13(2):632–643

    MathSciNet  MATH  Google Scholar 

  6. Gross BJ, Atzberger PJ (2018) Hydrodynamic flows on curved surfaces: Spectral numerical methods for radial manifold shapes. J Comput Phys 371:663–689

    MathSciNet  MATH  Google Scholar 

  7. Li J, Gao Z, Dai Z, Feng X (2020) Divergence-free radial kernel for surface Stokes equations based on the surface Helmholtz decomposition. Comput Phys Commun 256:107408

    MathSciNet  Google Scholar 

  8. Yang J, Li Y, Kim J (2020) A practical finite difference scheme for the Navier-Stokes equation on curved surfaces in \({{\mathbb{R}}}^3\). J Comput Phys 411:109403

    MathSciNet  MATH  Google Scholar 

  9. Torres-Sánchez A, Millán D, Arroyo M (2019) Modelling fluid deformable surfaces with an emphasis on biological interfaces. J Fluid Mech 872:218–271

    MathSciNet  MATH  Google Scholar 

  10. Nitschke I, Reuther S, Voigt A (2019) Hydrodynamic interactions in polar liquid crystals on evolving surfaces. Phys Rev Fluids 4(4):044002

    Google Scholar 

  11. Reuther S, Nitschke I, Voigt A (2020) A numerical approach for fluid deformable surfaces. J Fluid Mech 900:R8

    MathSciNet  MATH  Google Scholar 

  12. Hejranfar K, Ezzatneshan E (2014) Implementation of a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates. J Comput Phys 267:28–49

    MathSciNet  MATH  Google Scholar 

  13. Matyka M, Dzikowski M (2021) Memory-efficient Lattice Boltzmann Method for low Reynolds number flows. Comput Phys Commun 267:108044

    MathSciNet  Google Scholar 

  14. Adam S, Hajabdollahi F, Premnath KN (2021) Cascaded lattice Boltzmann modeling and simulations of three-dimensional non-Newtonian fluid flows. Comput Phys Commun 262:107858

    MathSciNet  Google Scholar 

  15. Tang X, Su Y, Wang F, Li L (2013) Numerical research on lid-driven cavity flows using a three-dimensional lattice Boltzmann model on non-uniform meshes. Sci China Technol Sci 56(9):2178–2187

    Google Scholar 

  16. Liu H, Valocchi AJ, Kang Q (2012) Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys Rev E 85(4):046309

    Google Scholar 

  17. Sadeghi R, Shadloo MS, Hopp-Hirschler M, Hadjadj A, Nieken U (2018) Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl 75(7):2445–2465

    MathSciNet  MATH  Google Scholar 

  18. Li D, Tong ZX, Ren Q, He YL, Tao WQ (2017) Three-dimensional lattice Boltzmann models for solid-liquid phase change. Int J Heat Mass Transf 115:1334–1347

    Google Scholar 

  19. Peng G, Xi H, Duncan C, Chou SH (1999) Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys Rev E 59(4):4675

    Google Scholar 

  20. Patil DV, Lakshmisha KN (2009) Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J Comput Phys 228(14):5262–5279

    MathSciNet  MATH  Google Scholar 

  21. Li W, Luo LS (2016) Finite volume lattice Boltzmann method for nearly incompressible flows on arbitrary unstructured meshes. Commun Comput Phys 20(2):301–324

    MathSciNet  MATH  Google Scholar 

  22. Wang Y, Zhong C, Cao J, Zhuo C, Liu S (2020) A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, part I: numerical framework and its application to laminar flow simulation. Comput Math Appl 79(5):1590–1618

    MathSciNet  MATH  Google Scholar 

  23. Wang Y, Zhong C, Cao J, Zhuo C, Liu S (2020) A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, part II: extension towards turbulent flow simulation. Comput Math Appl 79(8):2133–2152

    MathSciNet  MATH  Google Scholar 

  24. Ma J, Wang Z, Young J, Lai JCS, Sui Y, Tian FB (2020) An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries. J Comput Phys 415:109487

    MathSciNet  MATH  Google Scholar 

  25. Yu Y, Li Q, Wen ZX, Huang RZ (2020) Investigation on boundary schemes in lattice Boltzmann simulations of boiling heat transfer involving curved surfaces. Phys Fluids 32(6):063305

    Google Scholar 

  26. Di Ilio G, Ubertini S, Succi S, Falcucci G (2020) Nanofluid heat transfer in wavy-wall channels with different geometries: a finite-volume lattice Boltzmann study. J Sci Comput 83(3):56

    MathSciNet  MATH  Google Scholar 

  27. Fan Z, Zhao Y, Kaufman A, He Y (2005) Adapted unstructured LBM for flow simulation on curved surfaces. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 245–254

  28. Yang J, Kim J (2020) A phase-field model and its efficient numerical method for two-phase flows on arbitrarily curved surfaces in 3D space. Comput Methods Appl Mech Engrg 372:113382

    MathSciNet  MATH  Google Scholar 

  29. Chen SG, Wu JY (2004) Estimating normal vectors and curvatures by centroid weights. Comput Aided Geom Des 21:447–458

    MathSciNet  MATH  Google Scholar 

  30. Junk M, Klar A (2000) Discretizations for the incompressible Navier-Stokes equations based on the lattice Boltzmann method. SIAM J Sci Comput 22(1):1–19

    MathSciNet  MATH  Google Scholar 

  31. Li Y, Kim J, Wang N (2017) An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces. Commun Nonlinear Sci Numer Simulat 53:213–227

    MathSciNet  MATH  Google Scholar 

  32. Li Y, Qi X, Kim J (2018) Direct discretization method for the Cahn-Hilliard equation on an evolving surface. J Sci Comput 77:1147–1163

    MathSciNet  MATH  Google Scholar 

  33. Li Y, Luo C, Xia B, Kim J (2019) An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces. Appl Math Model 67:477–490

    MathSciNet  MATH  Google Scholar 

  34. Brandner P, Jankuhn T, Praetorius S, Reusken A, Voigt A (2021) Finite element discretization methods for velocity-pressure and stream function formulations of surface Stokes equations. arXiv preprint arXiv:2103.03843

  35. Yang J, Kim J (2021) Numerical study of incompressible binary fluids on 3D curved surfaces based on the conservative Allen-Cahn-Navier-Stokes model. Comput Fluids 228:105094

    MathSciNet  MATH  Google Scholar 

  36. Lee HG, Kim J (2015) Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids. Eur J Mech B Fluids 49:77–88

    MathSciNet  MATH  Google Scholar 

  37. Zhang M, Xiao X, Feng X (2021) Numerical simulations for the predator-prey model on surfaces with lumped mass method. Eng Comput 37:2047–2058

    Google Scholar 

  38. Abbaszadeh M, Dehghan M (2020) The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic-quintic complex Ginzburg-Landau equations on complicated geometries. Eng Comput. https://doi.org/10.1007/s00366-020-01089-6

    Article  Google Scholar 

  39. Liang H, Zhang C, Du R, Wei Y (2020) Lattice Boltzmann method for fractional Cahn-Hilliard equation. Commun Nonlinear Sci Numer Simulat 91:105443

    MathSciNet  MATH  Google Scholar 

  40. Liang H, Xu J, Chen J, Chai Z, Shi B (2019) Lattice Boltzmann modeling of wall-bounded ternary fluid flows. Appl Math Model 73:487–513

    MathSciNet  MATH  Google Scholar 

  41. Yang J, Li Y, Lee C, Lee HG, Kwak S, Hwang Y, Xin X, Kim J (2022) An explicit conservative Saul’yev scheme for the Cahn-Hilliard equation. Int J Mech Sci 217:106985

    Google Scholar 

  42. Qiao Y, Qian L, Feng X (2021) Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces. Eng Comput. https://doi.org/10.1007/s00366-021-01357-z

    Article  Google Scholar 

  43. Nee A (2020) Hybrid lattice Boltzmann-Finite difference formulation for combined heat transfer problems by 3D natural convection and surface thermal radiation. Int J Mech Sci 173:105447

    Google Scholar 

  44. Zong Y, Zhang C, Liang H, Wang L, Xu J (2020) Modeling surfactant-laden droplet dynamics by lattice Boltzmann method. Phys Fluids 32:122105

    Google Scholar 

  45. Sun M, Feng X, Wang K (2020) Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface. Comput Methods Appl Mech Engrg 367:113123

    MathSciNet  MATH  Google Scholar 

  46. Xia Q, Yu Q, Li Y (2021) A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces. Comput Methods Appl Mech Engrg 384:113987

    MathSciNet  MATH  Google Scholar 

  47. Esfe MH, Esfandeh S, Bahiraei M (2020) A two-phase simulation for investigating natural convection characteristics of nanofluid inside a perturbed enclosure filled with porous medium. Eng Comput. https://doi.org/10.1007/s00366-020-01204-7

    Article  Google Scholar 

Download references

Acknowledgements

The work of Z. Tan is supported by the National Nature Science Foundation of China (11971502), and Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2020B1212060032). S.K. Kim was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1C1C2005275). The corresponding author (J.S. Kim) was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1A2C1003844). The authors would like to thank the reviewers for their valuable suggestions and comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tan, Z., Kim, S. et al. Finite volume scheme for the lattice Boltzmann method on curved surfaces in 3D. Engineering with Computers 38, 5507–5518 (2022). https://doi.org/10.1007/s00366-022-01671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01671-0

Keywords

Navigation