Skip to main content

Advertisement

Log in

Multiphysics mode synthesis of fluid–structure interaction with free surface

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A new component mode synthesis (CMS) is introduced for reduced-order modeling of fluid–structure interaction (FSI) with a free surface. The components imply parts of structures in the CMS method of conventional structural vibration, but they are mono-physics domains in multiphysics problems. Therefore, unlike the original CMS, the interface constraint modes for multiphysics need to be newly defined to reflect the interaction between different physics, which is realized by a sequential model reduction scheme, which is known as multiphysics mode synthesis (MMS). This study addresses a widely used asymmetric (u, p) formulation that comprises structural displacement (u) and fluid pressure (p) including free surface and interior fluid. In carrying out the proposed sequential MMS, the structural part is first reduced, and then, a newly refined coupling matrix including structural modal effects is added to the fluid matrices. The fluid part is then reduced with the updated matrices. Consequently, accuracy improvement of the reduced matrices is achieved while preserving the strongly coupled effect in the proposed MMS, and the numerical instabilities in the model reduction process are alleviated. Better computational efficiency of the reduction process is also achieved by ignoring the higher order coupling terms that have numerically less effect. The performance of the proposed MMS is illustrated through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Morand HJ, Ohayon R (1995) Fluid structure interaction. Wiley, New York

    MATH  Google Scholar 

  2. Morand H, Ohayon R (1979) Substructure variational analysis of the vibrations of coupled fluid–structure systems. Finite element results. Int J Numer Meth Eng 14(5):741–755

    Article  MATH  Google Scholar 

  3. Zienkiewicz OC, Bettess P (1978) Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment. Int J Numer Meth Eng 13(1):1–16

    Article  MATH  Google Scholar 

  4. Everstine GC (1981) A symmetric potential formulation for fluid–structure interaction. J Sound Vib 79(1):157–160

    Article  Google Scholar 

  5. Sandberg G, Goransson P (1988) A symmetric finite element formulation for acoustic fluid–structure interaction analysis. J Sound Vib 123(3):507–515

    Article  Google Scholar 

  6. Ohayon R, Soize C (1997) Structural acoustics and vibration: mechanical models, variational formulations and discretization. Elsevier, Amsterdam

    Google Scholar 

  7. Herrmann J, Maess M, Gaul L (2010) Substructuring including interface reduction for the efficient vibro-acoustic simulation of fluid-filled piping systems. Mech Syst Signal Process 24(1):153–163

    Article  Google Scholar 

  8. Tran QH, Ouisse M, Bouhaddi N (2010) A robust component mode synthesis method for stochastic damped vibroacoustics. Mech Syst Signal Process 24(1):164–181

    Article  Google Scholar 

  9. Craig RR, Bampton MC (1968) Coupling of substructures for dynamic analyses. AIAA J 6(7):1313–1319

    Article  MATH  Google Scholar 

  10. Kim JG, Park YJ, Lee GH, Kim DN (2017) A general model reduction with primal assembly in structural dynamics. Comput Methods Appl Mech Eng 324:1–28

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim JG, Lee PS (2015) An enhanced Craig-Bampton method. Int J Numer Meth Eng 103(2):79–93

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim JG, Boo SH, Lee PS (2015) An enhanced AMLS method and its performance. Comput Methods Appl Mech Eng 287:90–111

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Cui, J. Xing, X. Wang, Y. Wang, S. Zhu, G. Zheng (2017)A simultaneous iterative scheme for the Craig-Bampton reduction based substructuring, In: Dynamics of coupled structures, vol 4, Springer, Cham, p 103–114

  14. Go MS, Lim JH, Kim JG, Hwang KR (2020) A family of Craig-Bampton methods considering residual mode compensation. Appl Math Comput 369:124822

    MathSciNet  MATH  Google Scholar 

  15. Chung IS, Kim JG, Chae SW, Park KC (2021) An iterative scheme of flexibility-based component mode synthesis with higher order residual modal compensation. Int J Numer Meth Eng 122(13):3171–3190

    Article  MathSciNet  Google Scholar 

  16. Park KC, Felippa CA, Ohayon R (2001) Partitioned formulation of internal fluid–structure interaction problems by localized Lagrange multipliers. Comput Methods Appl Mech Eng 190(24–25):2989–3007

    Article  MATH  Google Scholar 

  17. González JA, Park KC, Lee I, Felippa CA, Ohayon R (2012) Partitioned vibration analysis of internal fluid–structure interaction problems. Int J Numer Meth Eng 92(3):268–300

    Article  MathSciNet  MATH  Google Scholar 

  18. Akkaoui Q, Capiez-Lernout E, Soize C, Ohayon R (2019) Revisiting the experiment of a free-surface resonance of a liquid in a vibration tank using a nonlinear fluid–structure computational model. J Fluids Struct 85:149–164

    Article  Google Scholar 

  19. Kim SM, Kim JG, Chae SW, Park KC (2019) A strongly coupled model reduction of vibro-acoustic interaction. Comput Methods Appl Mech Eng 347:495–516

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim SM, Chae SW, Kim JG (2020) Multiphysics model reduction of symmetric vibro-acoustic formulation with a priori error estimation criteria. Int J Numer Meth Eng 121(23):5381–5404

    Article  MathSciNet  Google Scholar 

  21. Kim SM, Kim JG, Chae SW, Park KC (2016) Evaluating mode selection methods for component mode synthesis. AIAA J 54(9):2852–2863

    Article  Google Scholar 

  22. Kim SM, Kim JG, Park KC, Chae SW (2018) A component mode selection method based on a consistent perturbation expansion of interface displacement. Comput Methods Appl Mech Eng 330:578–597

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang X, Wang D, Liu B (2020) Efficient acoustic topology optimization using vibro-acoustic coupled craig-bampton mode synthesis. Acoust Austr 48(3):407–418

    Article  Google Scholar 

  24. Takebayashi K, Aya T, Andow K, Yamaguchi T (2021) Modal loss factor approximation for up formulation FEM using modal strain and kinetic energy method. J Sound Vib 505:116069

    Article  Google Scholar 

  25. Fu Z, Xi Q, Li Y, Huang H, Rabczuk T (2020) Hybrid FEM–SBM solver for structural vibration induced underwater acoustic radiation in shallow marine environment. Comput Methods Appl Mech Eng 369:113236

    Article  MathSciNet  MATH  Google Scholar 

  26. Baydoun SK, Voigt M, Jelich C, Marburg S (2020) A greedy reduced basis scheme for multifrequency solution of structural acoustic systems. Int J Numer Meth Eng 121:187–200

    Article  MathSciNet  Google Scholar 

  27. Soares D Jr, Godinho L (2012) An optimized BEM–FEM iterative coupling algorithm for acoustic–elastodynamic interaction analyses in the frequency domain. Comput Struct 106:68–80

    Article  Google Scholar 

  28. Zheng CJ, Zhang C, Bi CX, Gao HF, Du L, Chen HB (2017) Coupled FE–BE method for eigenvalue analysis of elastic structures submerged in an infinite fluid domain. Int J Numer Meth Eng 110:163–185

    Article  MathSciNet  MATH  Google Scholar 

  29. Sigrist J-F (2015) Fluid-structure interaction: an introduction to finite element coupling. Wiley, West Sussex

    Book  MATH  Google Scholar 

  30. Veldman AEP, Gerrits J, Luppes R, Helder JA, Vreeburg JPB (2007) The numerical simulation of liquid sloshing on board spacecraft. J Comput Phys 224:82–99

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang X (2008) Fundamentals of fluid-solid interactions. Elsevier, Amsterdam

    MATH  Google Scholar 

  32. Faltinsen OM, Timokha AN (2009) Sloshing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  33. Eswaran M, Saha UK (2011) Sloshing of liquids in partially filled tanks—a review of experimental investigations. Ocean Syst Eng 1(2):131–155

    Article  Google Scholar 

  34. Ryzhakov PB, Rossi R, Idelsohn SR, Onate E (2010) A monolithic Lagrangian approach for fluid–structure interaction problems. Comput Mech 46(6):883–899

    Article  MathSciNet  MATH  Google Scholar 

  35. Pal NC, Bhattacharyya SK, Sinha PK (2003) Non-linear coupled slosh dynamics of liquid-filled laminated composite containers: a two dimensional finite element approach. J Sound Vib 261(4):729–749

    Article  Google Scholar 

  36. Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270

    Article  MATH  Google Scholar 

  37. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD–DEM. Prog Comput Fluid Dyn Int J 12(2–3):140–152

    Article  MathSciNet  Google Scholar 

  38. Schotté JS, Ohayon R (2013) Linearized formulation for fluid–structure interaction: application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface. J Sound Vib 332(10):2396–2414

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A2C4087079, NRF-2020M2D7A1079180, and NRF-2022M2D7A1015527).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seongmin Chang or Jin-Gyun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KH., Hagos, R.W., Chang, S. et al. Multiphysics mode synthesis of fluid–structure interaction with free surface. Engineering with Computers 39, 2889–2904 (2023). https://doi.org/10.1007/s00366-022-01676-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01676-9

Keywords