Skip to main content
Log in

The 10-th order of accuracy of ‘quadratic’ elements for elastic heterogeneous materials with smooth interfaces and unfitted Cartesian meshes

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Recently, we have developed the optimal local truncation error method (OLTEM) for PDEs with homogeneous materials on regular and irregular domains and Cartesian meshes as well as OLTEM with simple 9-point stencils for the 2-D scalar time-dependent wave and heat equations for heterogeneous materials with irregular interfaces. Here, OLTEM is extended to a much more general case of a system of elastic PDEs for heterogeneous materials with smooth irregular interfaces and unfitted Cartesian meshes. We also use larger 25-point stencils that are similar to those for quadratic quadrilateral finite elements. The interface conditions on the interfaces where the jumps in material properties occur are added to the expression for the local truncation error and do not change the width of the stencils. There are no unknowns on interfaces between different materials; the structure of the global discrete equations is the same for homogeneous and heterogeneous materials. The calculation of the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the optimal 10-th order of accuracy for OLTEM with the 25-point stencils on unfitted Cartesian meshes. This corresponds to the increase in accuracy by seven orders for OLTEM compared to conventional quadratic finite elements with similar stencils. A new post-processing procedure for the stress calculations has been developed. Similar to basic computations, it includes OLTEM with the 25-point compact stencils and provides a very high accuracy of the stresses. Numerical experiments for elastic heterogeneous materials with circular and elliptical interfaces show that at the same number of degrees of freedom, OLTEM with unfitted meshes is more accurate than high order (up to the fifth order—the maximum order implemented in the COMSOL software) finite elements with a much greater stencil width and conformed meshes. Moreover, OLTEM with the 25-point stencils provides very accurate results for nearly incompressible materials (e.g., with Poisson ratio 0.4995).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Singh K, Williams J (2005) A parallel fictitious domain multigrid preconditioner for the solution of Poisson’s equation in complex geometries. Comput Methods Appl Mech Eng 194(45–47):4845–4860

    Article  MATH  Google Scholar 

  2. Vos P, van Loon R, Sherwin S (2008) A comparison of fictitious domain methods appropriate for spectral/hp element discretisations. Comput Methods Appl Mech Eng 197(25–28):2275–2289

    Article  MathSciNet  MATH  Google Scholar 

  3. Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput Methods Appl Mech Eng 199(41–44):2680–2686

    Article  MathSciNet  MATH  Google Scholar 

  4. Rank E, Kollmannsberger S, Sorger C, Duster A (2011) Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45–46):3200–3209

    Article  MathSciNet  MATH  Google Scholar 

  5. Rank E, Ruess M, Kollmannsberger S, Schillinger D, Duster A (2012) Geometric modeling, isogeometric analysis and the finite cell method. Comput Methods Appl Mech Eng 249–252:104–115

    Article  MATH  Google Scholar 

  6. Fries T, Omerović S, Schöllhammer D, Steidl J (2017) Higher-order meshing of implicit geometries-part I: integration and interpolation in cut elements. Comput Methods Appl Mech Eng 313:759–784

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoang T, Verhoosel CV, Auricchio F, van Brummelen EH, Reali A (2017) Mixed isogeometric finite cell methods for the stokes problem. Comput Methods Appl Mech Eng 316:400–423

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhao S, Wei GW (2009) Matched interface and boundary (MIB) for the implementation of boundary conditions in high-order central finite differences. Int J Numer Methods Eng 77(12):1690–1730

    Article  MathSciNet  MATH  Google Scholar 

  9. May S, Berger M (2017) An explicit implicit scheme for cut cells in embedded boundary meshes. J Sci Comput 71(3):919–943

    Article  MathSciNet  MATH  Google Scholar 

  10. Kreisst H-O, Petersson NA (2006) An embedded boundary method for the wave equation with discontinuous coefficients. SIAM J Sci Comput 28(6):2054–2074

    Article  MathSciNet  MATH  Google Scholar 

  11. Kreiss H-O, Petersson NA (2006) A second order accurate embedded boundary method for the wave equation with Dirichlet data. SIAM J Sci Comput 27(4):1141–1167

    Article  MathSciNet  MATH  Google Scholar 

  12. Kreiss H-O, Petersson NA, Ystrom J (2004) Difference approximations of the Neumann problem for the second order wave equation. SIAM J Numer Anal 42(3):1292–1323

    Article  MathSciNet  MATH  Google Scholar 

  13. Jomaa Z, Macaskill C (2010) The Shortley–Weller embedded finite-difference method for the 3D Poisson equation with mixed boundary conditions. J Comput Phys 229(10):3675–3690

    Article  MathSciNet  MATH  Google Scholar 

  14. Jomaa Z, Macaskill C (2005) The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions. J Comput Phys 202(2):488–506

    Article  MathSciNet  MATH  Google Scholar 

  15. Hellrung JL Jr, Wang L, Sifakis E, Teran JM (2012) A second order virtual node method for elliptic problems with interfaces and irregular domains in three dimensions. J Comput Phys 231(4):2015–2048

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen L, Wei H, Wen M (2017) An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J Comput Phys 334:327–348

    Article  MathSciNet  MATH  Google Scholar 

  17. Bedrossian J, von Brecht JH, Zhu S, Sifakis E, Teran JM (2010) A second order virtual node method for elliptic problems with interfaces and irregular domains. J Comput Phys 229(18):6405–6426

    Article  MathSciNet  MATH  Google Scholar 

  18. Assêncio DC, Teran JM (2013) A second order virtual node algorithm for stokes flow problems with interfacial forces, discontinuous material properties and irregular domains. J Comput Phys 250:77–105

    Article  MathSciNet  MATH  Google Scholar 

  19. Mattsson K, Almquist M (2017) A high-order accurate embedded boundary method for first order hyperbolic equations. J Comput Phys 334:255–279

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwartz P, Barad M, Colella P, Ligocki T (2006) A Cartesian grid embedded boundary method for the heat equation and Poisson’s equation in three dimensions. J Comput Phys 211(2):531–550

    Article  MathSciNet  MATH  Google Scholar 

  21. Dakin G, Despres B, Jaouen S (2018) Inverse Lax–Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids. J Comput Phys 353:228–257

    Article  MathSciNet  MATH  Google Scholar 

  22. Colella P, Graves DT, Keen BJ, Modiano D (2006) A Cartesian grid embedded boundary method for hyperbolic conservation laws. J Comput Phys 211(1):347–366

    Article  MathSciNet  MATH  Google Scholar 

  23. Crockett R, Colella P, Graves D (2011) A Cartesian grid embedded boundary method for solving the Poisson and heat equations with discontinuous coefficients in three dimensions. J Comput Phys 230(7):2451–2469

    Article  MathSciNet  MATH  Google Scholar 

  24. McCorquodale P, Colella P, Johansen H (2001) A Cartesian grid embedded boundary method for the heat equation on irregular domains. J Comput Phys 173(2):620–635

    Article  MathSciNet  MATH  Google Scholar 

  25. Johansen H, Colella P (1998) A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J Comput Phys 147(1):60–85

    Article  MathSciNet  MATH  Google Scholar 

  26. Angel JB, Banks JW, Henshaw WD (2018) High-order upwind schemes for the wave equation on overlapping grids: Maxwell’s equations in second-order form. J Comput Phys 352:534–567

    Article  MathSciNet  MATH  Google Scholar 

  27. Uddin H, Kramer R, Pantano C (2014) A Cartesian-based embedded geometry technique with adaptive high-order finite differences for compressible flow around complex geometries. J Comput Phys 262:379–407

    Article  MathSciNet  MATH  Google Scholar 

  28. Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. part I: Poisson and Stokes problems. J Comput Phys 372:972–995

    Article  MathSciNet  MATH  Google Scholar 

  29. Song T, Main A, Scovazzi G, Ricchiuto M (2018) The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows. J Comput Phys 369:45–79

    Article  MathSciNet  MATH  Google Scholar 

  30. Hosseinverdi S, Fasel HF (2018) An efficient, high-order method for solving Poisson equation for immersed boundaries: combination of compact difference and multiscale multigrid methods. J Comput Phys 374:912–940

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang Q, Babuska I (2020) A stable generalized finite element method (SGFEM) of degree two for interface problems. Comput Methods Appl Mech Eng 363:112889

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo R, Lin T, Lin Y (2019) Approximation capabilities of immersed finite element spaces for elasticity interface problems. Numer Methods Partial Differ Equ 35(3):1243–1268

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu S, Wei G (2007) Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities. J Comput Phys 227(1):602–632

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang T-H, Chen J-S, Tupek MR, Beckwith FN, Koester JJ, Fang HE (2021) A variational multiscale immersed meshfree method for heterogeneous materials. Comput Mech 67:1059–1097

    Article  MathSciNet  MATH  Google Scholar 

  35. Idesman A (2020) A new numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes. Part 1: the derivations for the wave heat and Poisson equations in the 1-D and 2-D cases. Arch Appl Mech 90(12):2621–2648

    Article  Google Scholar 

  36. Dey B, Idesman A (2020) A new numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes. Part 2: numerical simulation and comparison with FEM. Arch Appl Mech 90(12):2649–2674

    Article  Google Scholar 

  37. Idesman A, Dey B (2019) A new 3-D numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes. Comput Methods Appl Mech Eng 354:568–592

    Article  MathSciNet  MATH  Google Scholar 

  38. Idesman A, Dey B (2020) Compact high-order stencils with optimal accuracy for numerical solutions of 2-D time-independent elasticity equations. Comput Methods Appl Mech Eng 360:1–17

    Article  MathSciNet  MATH  Google Scholar 

  39. Idesman A, Dey B (2020) Accurate numerical solutions of 2-D elastodynamics problems using compact high-order stencils. Comput Struct 229:1–18

    Article  Google Scholar 

  40. Idesman A, Dey B (2020) A new numerical approach to the solution of the 2-D Helmholtz equation with optimal accuracy on irregular domains and Cartesian meshes. Comput Mech 65:1189–1204

    Article  MathSciNet  MATH  Google Scholar 

  41. Idesman A, Dey B (2020) New 25-point stencils with optimal accuracy for 2-d heat transfer problems. Comparison with the quadratic isogeometric elements. J Comput Phys 418:109640

    Article  MathSciNet  MATH  Google Scholar 

  42. Idesman A, Dey B (2021) Optimal local truncation error method for solution of wave and heat equations for heterogeneous materials with irregular interfaces and unfitted Cartesian meshes. Comput Methods Appl Mech Eng 384:113998

    Article  MathSciNet  MATH  Google Scholar 

  43. Idesman A, Dey B (2020) The treatment of the Neumann boundary conditions for a new numerical approach to the solution of PDEs with optimal accuracy on irregular domains and Cartesian meshes. Comput Methods Appl Mech Eng 365:112985

    Article  MathSciNet  MATH  Google Scholar 

  44. Idesman A, Mobin M (2022) Optimal local truncation error method for solution of 3-D Poisson equation with irregular interfaces and unfitted Cartesian meshes as well as for post-processing. Adv Eng Softw 167:103103

    Article  Google Scholar 

  45. Bathe KJ (1996) Finite element procedures. Prentice-Hall Inc., Upper Saddle River

    MATH  Google Scholar 

  46. Langtangen HP, Linge S (2017) Finite difference computing with PDEs. Springer, Berlin

    Book  MATH  Google Scholar 

  47. Lin T, Sheen D, Zhang X (2013) A locking-free immersed finite element method for planar elasticity interface problems. J Comput Phys 247:228–247

    Article  MathSciNet  MATH  Google Scholar 

  48. Idesman A (2018) The use of the local truncation error to improve arbitrary-order finite elements for the linear wave and heat equations. Comput Methods Appl Mech Eng 334:268–312

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of AI (theoretical developments) and as well as BD and MM (numerical study) has been supported in part by the Army Research Office (Grant number W911NF-21-1-0267), the NSF Grant CMMI-1935452 and by Texas Tech University. The views and conclusions contained in this paper are those of the authors and should not be interpreted as representing the official policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Idesman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (nb 20189 KB)

Supplementary file 2 (nb 34822 KB)

Appendices

Appendix 1: The coefficients \(b_{1,p}\) used in Eq. (22) for the first stencils with \(j=1\)

The first 10 coefficients \(b_{1,p}\) (\(p=1,2,\ldots ,10\)) used in Eq. (22) are presented below in the case of the mesh aspect ratio \(b_y=1\). All coefficients \(b_{1,p}\) used in these formulas are given in the attached file ‘b-coef.nb’. For simplicity of notations, below we use that

$$\begin{aligned}&b_{1,i} =b_{i}\ (i=1,2,\ldots ,10),\quad k_{1,i} =k_{i},\quad {{{\bar{k}}}}_{1,i} = {{{\bar{k}}}}_{i}\ (i=1,2,\ldots ,25),\\ &q_{i} = q_{1,i},\ q_{i+9} = q_{2,i},\ q_{i+18} = q_{3,i},\ q_{i+27} = q_{4,i}\ (i=1,2,\ldots ,9). \end{aligned}$$
$$\begin{aligned} b_{1}= & {} a_{1} { k}_{1}+a_{10} { k}_{10}+a_{11} { k}_{11}+a_{12} { k}_{12}\\ &+a_{13} { k}_{13}+a_{14} { k}_{14}+a_{15} { k}_{15}\\ &+a_{16} {k}_{16} +a_{17} { k}_{17}+a_{18} { k}_{18}+a_{19} { k}_{19}\\ &+a_{2} { k}_{2}+a_{20} { k}_{20}+a_{21} { k}_{21}\\ &+a_{22} { k}_{22} +a_{23} { k}_{23}+a_{24} { k}_{24}+a_{25} { k}_{25}+a_{3} { k}_{3}+a_{4} { k}_{4}\\ &+a_{5} { k}_{5}+a_{6} { k}_{6}+a_{7} { k}_{7}+a_{8} { k}_{8}+a_{9} { k}_{9}\\ &+q_{1}+q_{2}+q_{3}+q_{4}+q_{5}+q_{6}+q_{7}+q_{8}+q_{9}\\ b_{2}= & {} a_{1} {{{\bar{k}}}}_{1}+a_{10} {{{\bar{k}}}}_{10}+a_{11} {{{\bar{k}}}}_{11}+a_{12} {{{\bar{k}}}}_{12}+a_{13} {{{\bar{k}}}}_{13}+a_{14} {{{\bar{k}}}}_{14}\\ &+a_{15} {{{\bar{k}}}}_{15}+a_{16} {{{\bar{k}}}}_{16}\\ &+a_{17} {{{\bar{k}}}}_{17}+a_{18} {{{\bar{k}}}}_{18}+a_{19} {{{\bar{k}}}}_{19}+a_{2} {{{\bar{k}}}}_{2}+a_{20} {{{\bar{k}}}}_{20}+a_{21} {{{\bar{k}}}}_{21}\\ &+a_{22} {{{\bar{k}}}}_{22}+a_{23} {{{\bar{k}}}}_{23}+a_{24} {{{\bar{k}}}}_{24}+a_{25} {{{\bar{k}}}}_{25}+a_{3} {{{\bar{k}}}}_{3}\\ &+a_{4} {{{\bar{k}}}}_{4}+a_{5} {{{\bar{k}}}}_{5}+a_{6} {{{\bar{k}}}}_{6}+a_{7} {{{\bar{k}}}}_{7}+a_{8} {{{\bar{k}}}}_{8}+a_{9} {{{\bar{k}}}}_{9}\\ &+q_{19}+q_{20}+q_{21}+q_{22}+q_{23}+q_{24}+q_{25}+q_{26}+q_{27} \end{aligned}$$
$$\begin{aligned} b_{3}=-a_{1} { k}_{1}-a_{10} { k}_{10}-a_{11} { k}_{11}-a_{12} { k}_{12}-a_{13} { k}_{13}\\ &-a_{14} { k}_{14}-a_{15} { k}_{15}-a_{16} { k}_{16}\\ &-a_{17} { k}_{17}-a_{18} { k}_{18}-a_{19} { k}_{19}-a_{2} { k}_{2}-a_{20} { k}_{20}-a_{21} { k}_{21}\\ &-a_{22} { k}_{22}-a_{23} { k}_{23}-a_{24} { k}_{24}-a_{25} { k}_{25}-a_{3} { k}_{3}-a_{4} { k}_{4}\\ &-a_{5} { k}_{5}-a_{6} { k}_{6}-a_{7} { k}_{7}-a_{8} { k}_{8}-a_{9} { k}_{9}\\ &+{ k}_{1}+{ k}_{10}+{ k}_{11}+{ k}_{12}+{ k}_{13}+{ k}_{14}\\ &+{ k}_{15}+{ k}_{16}+{ k}_{17}+{ k}_{18}+{ k}_{19}\\ &+{ k}_{2}+{ k}_{20}+{ k}_{21}+{ k}_{22}+{ k}_{23}+{ k}_{24}\\ &+{ k}_{25}+{ k}_{3}+{ k}_{4}+{ k}_{5}+{ k}_{6}\\ &+{ k}_{7}+{ k}_{8}+{ k}_{9}-q_{1}-q_{2}-q_{3}-q_{4}\\ &-q_{5}-q_{6}-q_{7}-q_{8}-q_{9}\end{aligned}$$
$$\begin{aligned} b_{4}= & {} -a_{1} {{{\bar{k}}}}_{1}-a_{10} {{{\bar{k}}}}_{10}-a_{11} {{{\bar{k}}}}_{11}-a_{12} {{{\bar{k}}}}_{12}-a_{13} {{{\bar{k}}}}_{13}\\ &-a_{14} {{{\bar{k}}}}_{14}-a_{15} {{{\bar{k}}}}_{15}-a_{16} {{{\bar{k}}}}_{16}\\ &-a_{17} {{{\bar{k}}}}_{17}-a_{18} {{{\bar{k}}}}_{18}-a_{19} {{{\bar{k}}}}_{19}-a_{2} {{{\bar{k}}}}_{2}-a_{20} {{{\bar{k}}}}_{20}-a_{21} {{{\bar{k}}}}_{21}\\ &-a_{22} {{{\bar{k}}}}_{22}-a_{23} {{{\bar{k}}}}_{23}-a_{24} {{{\bar{k}}}}_{24}-a_{25} {{{\bar{k}}}}_{25}\\ &-a_{3} {{{\bar{k}}}}_{3}-a_{4} {{{\bar{k}}}}_{4}-a_{5} {{{\bar{k}}}}_{5}-a_{6} {{{\bar{k}}}}_{6}-a_{7} {{{\bar{k}}}}_{7}-a_{8} {{{\bar{k}}}}_{8}\\ &-a_{9} {{{\bar{k}}}}_{9}+{{{\bar{k}}}}_{1}+{{{\bar{k}}}}_{10} +{{{\bar{k}}}}_{11}+{{{\bar{k}}}}_{12}+{{{\bar{k}}}}_{13}+{{{\bar{k}}}}_{14}\\ &+{{{\bar{k}}}}_{15}+{{{\bar{k}}}}_{16}+{{{\bar{k}}}}_{17}+{{{\bar{k}}}}_{18}+{{{\bar{k}}}}_{19}+{{{\bar{k}}}}_{2}\\ &+{{{\bar{k}}}}_{20}+{{{\bar{k}}}}_{21}+{{{\bar{k}}}}_{22}+{{{\bar{k}}}}_{23}+{{{\bar{k}}}}_{24}+{{{\bar{k}}}}_{25}+{{{\bar{k}}}}_{3}\\ &+{{{\bar{k}}}}_{4}+{{{\bar{k}}}}_{5}+{{{\bar{k}}}}_{6}+{{{\bar{k}}}}_{7}\\ &+{{{\bar{k}}}}_{8}+{{{\bar{k}}}}_{9}-q_{19}-q_{20}-q_{21}-q_{22}\\ &-q_{23}-q_{24}-q_{25}-q_{26}-q_{27}\end{aligned}$$
$$\begin{aligned} b_{5}= & {} -a_{1} ({\mathrm{d}}x_G+2) { k}_{1}-a_{10} ({\mathrm{d}}x_G-2) { k}_{10}-a_{11} ({\mathrm{d}}x_G+2) { k}_{11}\\ &-a_{12} ({\mathrm{d}}x_G+1) { k}_{12}-a_{13} {\mathrm{d}}x_G { k}_{13}\\ &+{ k}_{14} (a_{14}-a_{14} {\mathrm{d}}x_G)-a_{15} ({\mathrm{d}}x_G-2) { k}_{15}-a_{16} ({\mathrm{d}}x_G+2) { k}_{16}\\ &-a_{17} ({\mathrm{d}}x_G+1) { k}_{17}-a_{18} {\mathrm{d}}x_G { k}_{18}\\ &+{ k}_{19} (a_{19}-a_{19} {\mathrm{d}}x_G)-a_{2} ({\mathrm{d}}x_G+1) { k}_{2}\\ &-a_{20} ({\mathrm{d}}x_G-2) { k}_{20}-a_{21} ({\mathrm{d}}x_G+2) { k}_{21}\\ &-a_{22} ({\mathrm{d}}x_G+1) { k}_{22}-a_{23} {\mathrm{d}}x_G { k}_{23}+{ k}_{24} (a_{24}\\ &-a_{24} {\mathrm{d}}x_G)-a_{25} ({\mathrm{d}}x_G-2) { k}_{25}\\ &-a_{3} {\mathrm{d}}x_G { k}_{3}+{ k}_{4} (a_{4}-a_{4} {\mathrm{d}}x_G)-a_{5} ({\mathrm{d}}x_G-2) { k}_{5}\\ &-a_{6} ({\mathrm{d}}x_G+2) { k}_{6}-a_{7} ({\mathrm{d}}x_G+1) { k}_{7}-a_{8} {\mathrm{d}}x_G { k}_{8}+{ k}_{9} (a_{9}\\ &-a_{9} {\mathrm{d}}x_G)+d_{x,2} q_{2}+d_{x,3} q_{3}+d_{x,4} q_{4}+d_{x,5} q_{5}+d_{x,6} q_{6}\\ &+d_{x,7} q_{7}+d_{x,8} q_{8}+d_{x,9} q_{9}+n_{x,1} q_{10} ({\lambda _*}+2 {\mu _{*}})+n_{x,2} q_{11} ({\lambda _*}\\ &+2 {\mu _{*}})+n_{x,3} q_{12} ({\lambda _*}+2 {\mu _{*}})+n_{x,4} q_{13} ({\lambda _*}\\ &+2 {\mu _{*}})+n_{x,5} q_{14} ({\lambda _*}\\ &+2 {\mu _{*}})+n_{x,6} q_{15} ({\lambda _*}+2 {\mu _{*}})+n_{x,7} q_{16} ({\lambda _*}\\ &+2 {\mu _{*}})+n_{x,8} q_{17} ({\lambda _*}+2 {\mu _{*}})\\ &+n_{x,9} q_{18} ({\lambda _*}+2 {\mu _{*}})+{\lambda _*} n_{y,1} q_{28}\\ &+{\lambda _*} n_{y,2} q_{29}+{\lambda _*} n_{y,3} q_{30}+{\lambda _*} n_{y,4} q_{31}\\ &+{\lambda _*} n_{y,5} q_{32}+{\lambda _*} n_{y,6} q_{33}\\ &+{\lambda _*} n_{y,7} q_{34}+{\lambda _*} n_{y,8} q_{35}+{\lambda _*} n_{y,9} q_{36}\end{aligned}$$
$$\begin{aligned} b_{6}= & {} -a_{1} ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{1}-a_{10} ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{10}-a_{11} ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{11}\\ &-a_{12} ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{12}-a_{13} {\mathrm{d}}x_G {{{\bar{k}}}}_{13}+{{{\bar{k}}}}_{14} (a_{14}\\ &-a_{14} {\mathrm{d}}x_G)-a_{15} ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{15}-a_{16} ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{16}\\ &-a_{17} ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{17}-a_{18} {\mathrm{d}}x_G {{{\bar{k}}}}_{18}\\ &+{{{\bar{k}}}}_{19} (a_{19}-a_{19} {\mathrm{d}}x_G)-a_{2} ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{2}-a_{20} ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{20}\\ &-a_{21} ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{21}-a_{22} ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{22}\\ &-a_{23} {\mathrm{d}}x_G {{{\bar{k}}}}_{23}+{{{\bar{k}}}}_{24} (a_{24}\\ &-a_{24} {\mathrm{d}}x_G)-a_{25} ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{25}-a_{3} {\mathrm{d}}x_G {{{\bar{k}}}}_{3}\\ &+{{{\bar{k}}}}_{4} (a_{4}-a_{4} {\mathrm{d}}x_G)-a_{5} ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{5}-a_{6} ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{6}\\ &-a_{7} ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{7}-a_{8} {\mathrm{d}}x_G {{{\bar{k}}}}_{8}\\ &+{{{\bar{k}}}}_{9} (a_{9}-a_{9} {\mathrm{d}}x_G)+d_{x,2} q_{20}+d_{x,3} q_{21}\\ &+d_{x,4} q_{22}+d_{x,5} q_{23}+d_{x,6} q_{24}\\ &+d_{x,7} q_{25}+d_{x,8} q_{26}+d_{x,9} q_{27}+n_{x,1} {\mu _{*}} q_{28}\\ &+n_{x,2} {\mu _{*}} q_{29}+n_{x,3} {\mu _{*}} q_{30}+n_{x,4} {\mu _{*}} q_{31}\\ &+n_{x,5} {\mu _{*}} q_{32}+n_{x,6} {\mu _{*}} q_{33}\\ &+n_{x,7} {\mu _{*}} q_{34}+n_{x,8} {\mu _{*}} q_{35}+n_{x,9} {\mu _{*}} q_{36}\\ &+n_{y,1} {\mu _{*}} q_{10}+n_{y,2} {\mu _{*}} q_{11}+n_{y,3} {\mu _{*}} q_{12}\\ &+n_{y,4} {\mu _{*}} q_{13}+n_{y,5} {\mu _{*}} q_{14}+n_{y,6} {\mu _{*}} q_{15}+n_{y,7} {\mu _{*}} q_{16}\\ &+n_{y,8} {\mu _{*}} q_{17}+n_{y,9} {\mu _{*}} q_{18}\end{aligned}$$
$$\begin{aligned} b_{7}= & {} (a_{1}-1) ({\mathrm{d}}x_G+2) { k}_{1}+(a_{10}-1) ({\mathrm{d}}x_G-2) { k}_{10}\\ &+(a_{11}-1) ({\mathrm{d}}x_G+2) { k}_{11}\\ &+(a_{12}-1) ({\mathrm{d}}x_G+1) { k}_{12}+(a_{13}-1) {\mathrm{d}}x_G { k}_{13}\\ &+(a_{14}-1) ({\mathrm{d}}x_G-1) { k}_{14}+(a_{15}-1) ({\mathrm{d}}x_G-2) { k}_{15}\\ &+(a_{16}-1) ({\mathrm{d}}x_G+2) { k}_{16}+(a_{17}-1) ({\mathrm{d}}x_G+1) { k}_{17}\\ &+(a_{18}-1) {\mathrm{d}}x_G { k}_{18}+(a_{19}-1) ({\mathrm{d}}x_G-1) { k}_{19}\\ &+(a_{2}-1) ({\mathrm{d}}x_G+1) { k}_{2}+(a_{20}-1) ({\mathrm{d}}x_G-2) { k}_{20}\\ &+(a_{21}-1) ({\mathrm{d}}x_G+2) { k}_{21}+(a_{22}-1) ({\mathrm{d}}x_G+1) { k}_{22}\\ &+(a_{23}-1) {\mathrm{d}}x_G { k}_{23}+(a_{24}-1) ({\mathrm{d}}x_G-1) { k}_{24}\\ &+(a_{25}-1) ({\mathrm{d}}x_G-2) { k}_{25}+(a_{3}-1) {\mathrm{d}}x_G { k}_{3}+(a_{4}-1) ({\mathrm{d}}x_G-1) { k}_{4}\\ &+(a_{5}-1) ({\mathrm{d}}x_G-2) { k}_{5}+(a_{6}-1) ({\mathrm{d}}x_G+2) { k}_{6}\\ &+(a_{7}-1) ({\mathrm{d}}x_G+1) { k}_{7}+(a_{8}-1) {\mathrm{d}}x_G { k}_{8}\\ &+(a_{9}-1) ({\mathrm{d}}x_G-1) { k}_{9}-d_{x,2} q_{2}-d_{x,3} q_{3}\\ &-d_{x,4} q_{4}-d_{x,5} q_{5}-d_{x,6} q_{6}\\ &-d_{x,7} q_{7}-d_{x,8} q_{8}-d_{x,9} q_{9}\\ &-n_{x,1} q_{10} ({\lambda _{**}}+2 {\mu _{**}})\\ &-n_{x,2} q_{11} ({\lambda _{**}}+2 {\mu _{**}})-n_{x,3} q_{12} ({\lambda _{**}}\\ &+2 {\mu _{**}})-n_{x,4} q_{13} ({\lambda _{**}}\\ &+2 {\mu _{**}})-n_{x,5} q_{14} ({\lambda _{**}}+2 {\mu _{**}})-n_{x,6} q_{15} ({\lambda _{**}}\\ &+2 {\mu _{**}})-n_{x,7} q_{16} ({\lambda _{**}}\\ &+2 {\mu _{**}})-n_{x,8} q_{17} ({\lambda _{**}}\\ &+2 {\mu _{**}})-n_{x,9} q_{18} ({\lambda _{**}}+2 {\mu _{**}})\\ &-{\lambda _{**}} n_{y,1} q_{28}-{\lambda _{**}} n_{y,2} q_{29}-{\lambda _{**}} n_{y,3} q_{30}\\ &-{\lambda _{**}} n_{y,4} q_{31}-{\lambda _{**}} n_{y,5} q_{32}\\ &-{\lambda _{**}} n_{y,6} q_{33}-{\lambda _{**}} n_{y,7} q_{34}\\ &-{\lambda _{**}} n_{y,8} q_{35}-{\lambda _{**}} n_{y,9} q_{36} \end{aligned}$$
$$\begin{aligned} b_{8}= & {} (a_{1}-1) ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{1}+(a_{10}-1) ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{10}\\ &+(a_{11}-1) ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{11}+(a_{12}-1) ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{12}\\ &+(a_{13}-1) {\mathrm{d}}x_G {{{\bar{k}}}}_{13}+(a_{14}-1) ({\mathrm{d}}x_G-1) {{{\bar{k}}}}_{14}\\ &+(a_{15}-1) ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{15}+(a_{16}-1) ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{16}\\ &+(a_{17}-1) ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{17}+(a_{18}-1) {\mathrm{d}}x_G {{{\bar{k}}}}_{18}\\ &+(a_{19}-1) ({\mathrm{d}}x_G-1) {{{\bar{k}}}}_{19}+(a_{2}-1) ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{2}\\ &+(a_{20}-1) ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{20}+(a_{21}-1) ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{21}\\ &+(a_{22}-1) ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{22}\\ &+(a_{23}-1) {\mathrm{d}}x_G {{{\bar{k}}}}_{23}+(a_{24}-1) ({\mathrm{d}}x_G-1) {{{\bar{k}}}}_{24}\\ &+(a_{25}-1) ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{25}+(a_{3}-1) {\mathrm{d}}x_G {{{\bar{k}}}}_{3}\\ &+(a_{4}-1) ({\mathrm{d}}x_G-1) {{{\bar{k}}}}_{4}+(a_{5}-1) ({\mathrm{d}}x_G-2) {{{\bar{k}}}}_{5}\\ &+(a_{6}-1) ({\mathrm{d}}x_G+2) {{{\bar{k}}}}_{6}+(a_{7}-1) ({\mathrm{d}}x_G+1) {{{\bar{k}}}}_{7}\\ &+(a_{8}-1) {\mathrm{d}}x_G {{{\bar{k}}}}_{8}+(a_{9}-1) ({\mathrm{d}}x_G-1) {{{\bar{k}}}}_{9}-d_{x,2} q_{20}-d_{x,3} q_{21}\\ &-d_{x,4} q_{22}-d_{x,5} q_{23}-d_{x,6} q_{24}-d_{x,7} q_{25}-d_{x,8} q_{26}-d_{x,9} q_{27}\\ &-n_{x,1} {\mu _{**}} q_{28}-n_{x,2} {\mu _{**}} q_{29}-n_{x,3} {\mu _{**}} q_{30}\\ &-n_{x,4} {\mu _{**}} q_{31}-n_{x,5} {\mu _{**}} q_{32}\\ &-n_{x,6} {\mu _{**}} q_{33}-n_{x,7} {\mu _{**}} q_{34}-n_{x,8} {\mu _{**}} q_{35}-n_{x,9} {\mu _{**}} q_{36}\\ &-n_{y,1} {\mu _{**}} q_{10}-n_{y,2} {\mu _{**}} q_{11}-n_{y,3} {\mu _{**}} q_{12}-n_{y,4} {\mu _{**}} q_{13}\\ &-n_{y,5} {\mu _{**}} q_{14}-n_{y,6} {\mu _{**}} q_{15}-n_{y,7} {\mu _{**}} q_{16}\\ &-n_{y,8} {\mu _{**}} q_{17}-n_{y,9} {\mu _{**}} q_{18} \end{aligned}$$
$$\begin{aligned} b_{9}= & {} -a_{1} ({\mathrm{d}}y_G+2) { k}_{1}-a_{10} ({\mathrm{d}}y_G+1) { k}_{10}-a_{11} {\mathrm{d}}y_G { k}_{11}\\ &-a_{12} {\mathrm{d}}y_G { k}_{12}-a_{13} {\mathrm{d}}y_G { k}_{13}-a_{14} {\mathrm{d}}y_G { k}_{14}\\ &-a_{15} {\mathrm{d}}y_G { k}_{15}+{ k}_{16} (a_{16}-a_{16} {\mathrm{d}}y_G)\\ &+{ k}_{17} (a_{17}-a_{17} {\mathrm{d}}y_G)+{ k}_{18} (a_{18}-a_{18} {\mathrm{d}}y_G)+{ k}_{19} (a_{19}\\ &-a_{19} {\mathrm{d}}y_G)-a_{2} ({\mathrm{d}}y_G+2) { k}_{2}+{ k}_{20} (a_{20}\\ &-a_{20} {\mathrm{d}}y_G)-a_{21} ({\mathrm{d}}y_G-2) { k}_{21}\\ &-a_{22} ({\mathrm{d}}y_G-2) { k}_{22}-a_{23} ({\mathrm{d}}y_G-2) { k}_{23}\\ &-a_{24} ({\mathrm{d}}y_G-2) { k}_{24}\\ &-a_{25} ({\mathrm{d}}y_G-2) { k}_{25}-a_{3} ({\mathrm{d}}y_G+2) { k}_{3}-a_{4} ({\mathrm{d}}y_G+2) { k}_{4}\\ &-a_{5} ({\mathrm{d}}y_G+2) { k}_{5}-a_{6} ({\mathrm{d}}y_G+1) { k}_{6}\\ &-a_{7} ({\mathrm{d}}y_G+1) { k}_{7}-a_{8} ({\mathrm{d}}y_G+1) { k}_{8}\\ &-a_{9} ({\mathrm{d}}y_G+1) { k}_{9}+d_{y,2} q_{2}+d_{y,3} q_{3}+d_{y,4} q_{4}\\ &+d_{y,5} q_{5}+d_{y,6} q_{6}+d_{y,7} q_{7}+d_{y,8} q_{8}+d_{y,9} q_{9}\\ &+n_{x,1} {\mu _{*}} q_{28}+n_{x,2} {\mu _{*}} q_{29}+n_{x,3} {\mu _{*}} q_{30}+n_{x,4} {\mu _{*}} q_{31}\\ &+n_{x,5} {\mu _{*}} q_{32}+n_{x,6} {\mu _{*}} q_{33}+n_{x,7} {\mu _{*}} q_{34}\\ &+n_{x,8} {\mu _{*}} q_{35}+n_{x,9} {\mu _{*}} q_{36}\\ &+n_{y,1} {\mu _{*}} q_{10}+n_{y,2} {\mu _{*}} q_{11}+n_{y,3} {\mu _{*}} q_{12}\\ &+n_{y,4} {\mu _{*}} q_{13}+n_{y,5} {\mu _{*}} q_{14}\\ &+n_{y,6} {\mu _{*}} q_{15}+n_{y,7} {\mu _{*}} q_{16}+n_{y,8} {\mu _{*}} q_{17}+n_{y,9} {\mu _{*}} q_{18} \end{aligned}$$
$$\begin{aligned} b_{10}= & {} -a_{1} ({\mathrm{d}}y_G+2) {{{\bar{k}}}}_{1}-a_{10} ({\mathrm{d}}y_G+1) {{{\bar{k}}}}_{10}-a_{11} {\mathrm{d}}y_G {{{\bar{k}}}}_{11}\\ &-a_{12} {\mathrm{d}}y_G {{{\bar{k}}}}_{12}-a_{13} {\mathrm{d}}y_G {{{\bar{k}}}}_{13}\\ &-a_{14} {\mathrm{d}}y_G {{{\bar{k}}}}_{14}-a_{15} {\mathrm{d}}y_G {{{\bar{k}}}}_{15}+{{{\bar{k}}}}_{16} (a_{16}\\ &-a_{16} {\mathrm{d}}y_G)+{{{\bar{k}}}}_{17} (a_{17}-a_{17} {\mathrm{d}}y_G)\\ &+{{{\bar{k}}}}_{18} (a_{18}-a_{18} {\mathrm{d}}y_G)+{{{\bar{k}}}}_{19} (a_{19}-a_{19} {\mathrm{d}}y_G)\\ &-a_{2} ({\mathrm{d}}y_G+2) {{{\bar{k}}}}_{2}+{{{\bar{k}}}}_{20} (a_{20}-a_{20} {\mathrm{d}}y_G)\\ &-a_{21} ({\mathrm{d}}y_G-2) {{{\bar{k}}}}_{21}-a_{22} ({\mathrm{d}}y_G-2) {{{\bar{k}}}}_{22}-a_{23} ({\mathrm{d}}y_G-2) {{{\bar{k}}}}_{23}\\ &-a_{24} ({\mathrm{d}}y_G-2) {{{\bar{k}}}}_{24}-a_{25} ({\mathrm{d}}y_G-2) {{{\bar{k}}}}_{25}-a_{3} ({\mathrm{d}}y_G+2) {{{\bar{k}}}}_{3}\\ &-a_{4} ({\mathrm{d}}y_G+2) {{{\bar{k}}}}_{4}-a_{5} ({\mathrm{d}}y_G+2) {{{\bar{k}}}}_{5}\\ &-a_{6} ({\mathrm{d}}y_G+1) {{{\bar{k}}}}_{6}-a_{7} ({\mathrm{d}}y_G+1) {{{\bar{k}}}}_{7}-a_{8} ({\mathrm{d}}y_G+1) {{{\bar{k}}}}_{8}\\ &-a_{9} ({\mathrm{d}}y_G+1) {{{\bar{k}}}}_{9}+d_{y,2} q_{20}+d_{y,3} q_{21}\\ &+d_{y,4} q_{22}+d_{y,5} q_{23}+d_{y,6} q_{24}+d_{y,7} q_{25}\\ &+d_{y,8} q_{26}+d_{y,9} q_{27}\\ &+{\lambda _*} n_{x,1} q_{10}+{\lambda _*} n_{x,2} q_{11}+{\lambda _*} n_{x,3} q_{12}\\ &+{\lambda _*} n_{x,4} q_{13}+{\lambda _*} n_{x,5} q_{14}+{\lambda _*} n_{x,6} q_{15}+{\lambda _*} n_{x,7} q_{16}\\ &+{\lambda _*} n_{x,8} q_{17}+{\lambda _*} n_{x,9} q_{18}\\ &+n_{y,1} q_{28} ({\lambda _*}+2 {\mu _{*}})+n_{y,2} q_{29} ({\lambda _*}+2 {\mu _{*}})\\ &+n_{y,3} q_{30} ({\lambda _*}+2 {\mu _{*}})+n_{y,4} q_{31} ({\lambda _*}\\ &+2 {\mu _{*}})+n_{y,5} q_{32} ({\lambda _*}\\ &+2 {\mu _{*}})+n_{y,6} q_{33} ({\lambda _*}+2 {\mu _{*}})\\ &+n_{y,7} q_{34} ({\lambda _*}+2 {\mu _{*}})+n_{y,8} q_{35} ({\lambda _*}\\ &+2 {\mu _{*}})+n_{y,9} q_{36} ({\lambda _*}+2 {\mu _{*}}) \end{aligned}$$

Appendix 2: The stencil coefficients for homogeneous materials

The stencils coefficients can be analytically found (see [38]) and for the first stencil they are (for convenience, the matrix form is used below for the representation of these coefficients for square meshes with \(b_y=1\)):

$$\begin{aligned}&\left( \begin{array}{ccccc} k_{1,21} &{} k_{1,22} &{} k_{1,23} &{} k_{1,24} &{} k_{1,25} \\ k_{1,16} &{} k_{1,17} &{} k_{1,18} &{} k_{1,19} &{} k_{1,20} \\ k_{1,11} &{} k_{1,12} &{} k_{1,13} &{} k_{1,14} &{} k_{1,15} \\ k_{1,6} &{} k_{1,7} &{} k_{1,8} &{} k_{1,9} &{} k_{1,10} \\ k_{1,1} &{} k_{1,2} &{} k_{1,3} &{} k_{1,4} &{} k_{1,5} \\ \end{array} \right) = \; \left| \begin{array}{cc} -\frac{593298 \lambda ^3+2618461 \lambda ^2 \mu +3545745 \lambda \mu ^2+1471382 \mu ^3}{36 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{2 \left( 99558 \lambda ^3+935431 \lambda ^2 \mu +1655370 \lambda \mu ^2+766547 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ -\frac{3648141 \lambda ^3+12961562 \lambda ^2 \mu +14963715 \lambda \mu ^2+5544394 \mu ^3}{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{28 \left( 65178 \lambda ^3+468496 \lambda ^2 \mu +748695 \lambda \mu ^2+321302 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ -\frac{5534814 \lambda ^3+18941123 \lambda ^2 \mu +21099985 \lambda \mu ^2+7567326 \mu ^3}{6 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{4 \left( 116166 \lambda ^3+2637137 \lambda ^2 \mu +5190940 \lambda \mu ^2+2508819 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} \\ -\frac{3648141 \lambda ^3+12961562 \lambda ^2 \mu +14963715 \lambda \mu ^2+5544394 \mu ^3}{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{28 \left( 65178 \lambda ^3+468496 \lambda ^2 \mu +748695 \lambda \mu ^2+321302 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ -\frac{593298 \lambda ^3+2618461 \lambda ^2 \mu +3545745 \lambda \mu ^2+1471382 \mu ^3}{36 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{2 \left( 99558 \lambda ^3+935431 \lambda ^2 \mu +1655370 \lambda \mu ^2+766547 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ \end{array} \right. \\ &\left. \begin{array}{ccc} -\frac{326514 \lambda ^3+2124173 \lambda ^2 \mu +3348835 \lambda \mu ^2+1424826 \mu ^3}{6 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{2 \left( 99558 \lambda ^3+935431 \lambda ^2 \mu +1655370 \lambda \mu ^2+766547 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{593298 \lambda ^3+2618461 \lambda ^2 \mu +3545745 \lambda \mu ^2+1471382 \mu ^3}{36 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ \frac{5228286 \lambda ^3+5361652 \lambda ^2 \mu -6876310 \lambda \mu ^2-6365076 \mu ^3}{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} -\frac{28 \left( 65178 \lambda ^3+468496 \lambda ^2 \mu +748695 \lambda \mu ^2+321302 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{3648141 \lambda ^3+12961562 \lambda ^2 \mu +14963715 \lambda \mu ^2+5544394 \mu ^3}{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ 1 &{} -\frac{4 \left( 116166 \lambda ^3+2637137 \lambda ^2 \mu +5190940 \lambda \mu ^2+2508819 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} -\frac{5534814 \lambda ^3+18941123 \lambda ^2 \mu +21099985 \lambda \mu ^2+7567326 \mu ^3}{6 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ \frac{5228286 \lambda ^3+5361652 \lambda ^2 \mu -6876310 \lambda \mu ^2-6365076 \mu ^3}{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} -\frac{28 \left( 65178 \lambda ^3+468496 \lambda ^2 \mu +748695 \lambda \mu ^2+321302 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{3648141 \lambda ^3+12961562 \lambda ^2 \mu +14963715 \lambda \mu ^2+5544394 \mu ^3}{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ -\frac{326514 \lambda ^3+2124173 \lambda ^2 \mu +3348835 \lambda \mu ^2+1424826 \mu ^3}{6 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{2 \left( 99558 \lambda ^3+935431 \lambda ^2 \mu +1655370 \lambda \mu ^2+766547 \mu ^3\right) }{9 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{593298 \lambda ^3+2618461 \lambda ^2 \mu +3545745 \lambda \mu ^2+1471382 \mu ^3}{36 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ \end{array} \; \right| , \end{aligned}$$
(40)
$$\begin{aligned}&\left( \begin{array}{ccccc} {{{\bar{k}}}}_{1,21} &{} {{{\bar{k}}}}_{1,22} &{} {{{\bar{k}}}}_{1,23} &{} {{{\bar{k}}}}_{1,24} &{} {{{\bar{k}}}}_{1,25} \\ {{{\bar{k}}}}_{1,16} &{} {{{\bar{k}}}}_{1,17} &{} {{{\bar{k}}}}_{1,18} &{} {{{\bar{k}}}}_{1,19} &{} {{{\bar{k}}}}_{1,20} \\ {{{\bar{k}}}}_{1,11} &{} {{{\bar{k}}}}_{1,12} &{} {{{\bar{k}}}}_{1,13} &{} {{{\bar{k}}}}_{1,14} &{} {{{\bar{k}}}}_{1,15} \\ {{{\bar{k}}}}_{1,6} &{} {{{\bar{k}}}}_{1,7} &{} {{{\bar{k}}}}_{1,8} &{} {{{\bar{k}}}}_{1,9} &{} {{{\bar{k}}}}_{1,10} \\ {{{\bar{k}}}}_{1,1} &{} {{{\bar{k}}}}_{1,2} &{} {{{\bar{k}}}}_{1,3} &{} {{{\bar{k}}}}_{1,4} &{} {{{\bar{k}}}}_{1,5} \\ \end{array} \right) = \left| \begin{array}{cc} \frac{25 \left( 16818 \lambda ^3+49421 \lambda ^2 \mu +46425 \lambda \mu ^2+13822 \mu ^3\right) }{12 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} \frac{50 \left( 5319 \lambda ^3+14038 \lambda ^2 \mu +10980 \lambda \mu ^2+2261 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} \\ \frac{25 \left( 21453 \lambda ^3+62726 \lambda ^2 \mu +58815 \lambda \mu ^2+17542 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} \frac{50 \left( 74538 \lambda ^3+243115 \lambda ^2 \mu +259491 \lambda \mu ^2+90914 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} \\ 0 &{} 0 \\ -\frac{25 \left( 21453 \lambda ^3+62726 \lambda ^2 \mu +58815 \lambda \mu ^2+17542 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} -\frac{50 \left( 74538 \lambda ^3+243115 \lambda ^2 \mu +259491 \lambda \mu ^2+90914 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} \\ -\frac{25 \left( 16818 \lambda ^3+49421 \lambda ^2 \mu +46425 \lambda \mu ^2+13822 \mu ^3\right) }{12 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } &{} -\frac{50 (e+\mu ) \left( 5319 \lambda ^2+8719 \lambda \mu +2261 \mu ^2\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} \\ \end{array} \right. \\ &\quad \left. \begin{array}{ccc} 0 &{} -\frac{50 \left( 5319 \lambda ^3+14038 \lambda ^2 \mu +10980 \lambda \mu ^2+2261 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} -\frac{25 \left( 16818 \lambda ^3+49421 \lambda ^2 \mu +46425 \lambda \mu ^2+13822 \mu ^3\right) }{12 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ 0 &{} -\frac{50 \left( 74538 \lambda ^3+243115 \lambda ^2 \mu +259491 \lambda \mu ^2+90914 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} -\frac{25 \left( 21453 \lambda ^3+62726 \lambda ^2 \mu +58815 \lambda \mu ^2+17542 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} \\ 0 &{} 0 &{} 0 \\ 0 &{} \frac{50 \left( 74538 \lambda ^3+243115 \lambda ^2 \mu +259491 \lambda \mu ^2+90914 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} \frac{25 \left( 21453 \lambda ^3+62726 \lambda ^2 \mu +58815 \lambda \mu ^2+17542 \mu ^3\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} \\ 0 &{} \frac{50 (e+\mu ) \left( 5319 \lambda ^2+8719 \lambda \mu +2261 \mu ^2\right) }{4094838 \lambda ^3+69578991 \lambda ^2 \mu +133228095 \lambda \mu ^2+63715242 \mu ^3} &{} \frac{25 \left( 16818 \lambda ^3+49421 \lambda ^2 \mu +46425 \lambda \mu ^2+13822 \mu ^3\right) }{12 \left( 1364946 \lambda ^3+23192997 \lambda ^2 \mu +44409365 \lambda \mu ^2+21238414 \mu ^3\right) } \\ \end{array} \right| . \end{aligned}$$
(41)

Similarly, we can find 50 coefficients \(k_{2,i}\) and \({{{\bar{k}}}}_{2,i}\) (\(i=1,2,\ldots ,25\)) of the second stencil equation:

$$\begin{aligned}&\left( \begin{array}{ccccc} k_{2,21} &{} k_{2,22} &{} k_{2,23} &{} k_{2,24} &{} k_{2,25} \\ k_{2,16} &{} k_{2,17} &{} k_{2,18} &{} k_{2,19} &{} k_{2,20} \\ k_{2,11} &{} k_{2,12} &{} k_{2,13} &{} k_{2,14} &{} k_{2,15} \\ k_{2,6} &{} k_{2,7} &{} k_{2,8} &{} k_{2,9} &{} k_{2,10} \\ k_{2,1} &{} k_{2,2} &{} k_{2,3} &{} k_{2,4} &{} k_{2,5} \\ \end{array} \right) = \left( \begin{array}{ccccc} {{{\bar{k}}}}_{1,21} &{} {{{\bar{k}}}}_{1,22} &{} {{{\bar{k}}}}_{1,23} &{} {{{\bar{k}}}}_{1,24} &{} {{{\bar{k}}}}_{1,25} \\ {{{\bar{k}}}}_{1,16} &{} {{{\bar{k}}}}_{1,17} &{} {{{\bar{k}}}}_{1,18} &{} {{{\bar{k}}}}_{1,19} &{} {{{\bar{k}}}}_{1,20} \\ {{{\bar{k}}}}_{1,11} &{} {{{\bar{k}}}}_{1,12} &{} {{{\bar{k}}}}_{1,13} &{} {{{\bar{k}}}}_{1,14} &{} {{{\bar{k}}}}_{1,15} \\ {{{\bar{k}}}}_{1,6} &{} {{{\bar{k}}}}_{1,7} &{} {{{\bar{k}}}}_{1,8} &{} {{{\bar{k}}}}_{1,9} &{} {{{\bar{k}}}}_{1,10} \\ {{{\bar{k}}}}_{1,1} &{} {{{\bar{k}}}}_{1,2} &{} {{{\bar{k}}}}_{1,3} &{} {{{\bar{k}}}}_{1,4} &{} {{{\bar{k}}}}_{1,5} \\ \end{array} \right) ^T , \end{aligned}$$
(42)
$$\begin{aligned}&\left( \begin{array}{ccccc} {{{\bar{k}}}}_{2,21} &{} {{{\bar{k}}}}_{2,22} &{} {{{\bar{k}}}}_{2,23} &{} {{{\bar{k}}}}_{2,24} &{} {{{\bar{k}}}}_{2,25} \\ {{{\bar{k}}}}_{2,16} &{} {{{\bar{k}}}}_{2,17} &{} {{{\bar{k}}}}_{2,18} &{} {{{\bar{k}}}}_{2,19} &{} {{{\bar{k}}}}_{2,20} \\ {{{\bar{k}}}}_{2,11} &{} {{{\bar{k}}}}_{2,12} &{} {{{\bar{k}}}}_{2,13} &{} {{{\bar{k}}}}_{2,14} &{} {{{\bar{k}}}}_{2,15} \\ {{{\bar{k}}}}_{2,6} &{} {{{\bar{k}}}}_{2,7} &{} {{{\bar{k}}}}_{2,8} &{} {{{\bar{k}}}}_{2,9} &{} {{{\bar{k}}}}_{2,10} \\ {{{\bar{k}}}}_{2,1} &{} {{{\bar{k}}}}_{2,2} &{} {{{\bar{k}}}}_{2,3} &{} {{{\bar{k}}}}_{2,4} &{} {{{\bar{k}}}}_{2,5} \\ \end{array} \right) = \left( \begin{array}{ccccc} k_{1,21} &{} k_{1,22} &{} k_{1,23} &{} k_{1,24} &{} k_{1,25} \\ k_{1,16} &{} k_{1,17} &{} k_{1,18} &{} k_{1,19} &{} k_{1,20} \\ k_{1,11} &{} k_{1,12} &{} k_{1,13} &{} k_{1,14} &{} k_{1,15} \\ k_{1,6} &{} k_{1,7} &{} k_{1,8} &{} k_{1,9} &{} k_{1,10} \\ k_{1,1} &{} k_{1,2} &{} k_{1,3} &{} k_{1,4} &{} k_{1,5} \\ \end{array} \right) ^T , \end{aligned}$$
(43)

where the right-hand sides in Eqs. (42) and (43) are given by Eqs. (40) and (41) for the first stencil.

Appendix 3: The expression for the term \(p_1\) in Eqs. (28) and (29)

$$\begin{aligned} p_1= & {} (a_{10} { k}_{10} ({\mathrm{d}}x_G-2)^2+a_{1} ({\mathrm{d}}x_G+2)^2 { k}_{1} \\ &+a_{11} {\mathrm{d}}x_G^2 { k}_{11}+4 a_{11} { k}_{11} \\ &+4 a_{11} {\mathrm{d}}x_G { k}_{11}+a_{12} {\mathrm{d}}x_G^2 { k}_{12}+a_{12} { k}_{12}+2 a_{12} {\mathrm{d}}x_G { k}_{12} \\ &+a_{13} {\mathrm{d}}x_G^2 { k}_{13}+a_{14} {\mathrm{d}}x_G^2 { k}_{14}+a_{14} { k}_{14} \\ &-2 a_{14} {\mathrm{d}}x_G { k}_{14}+a_{15} {\mathrm{d}}x_G^2 { k}_{15} \\ &+4 a_{15} { k}_{15}-4 a_{15} {\mathrm{d}}x_G { k}_{15} \\ &+a_{16} {\mathrm{d}}x_G^2 { k}_{16}+4 a_{16} { k}_{16}+4 a_{16} {\mathrm{d}}x_G { k}_{16} \\ &+a_{17} {\mathrm{d}}x_G^2 { k}_{17}+a_{17} { k}_{17} \\ &+2 a_{17} {\mathrm{d}}x_G { k}_{17}+a_{18} {\mathrm{d}}x_G^2 { k}_{18} \\ &+a_{19} {\mathrm{d}}x_G^2 { k}_{19}+a_{19} { k}_{19}-2 a_{19} {\mathrm{d}}x_G { k}_{19} \\ &+a_{2} {\mathrm{d}}x_G^2 { k}_{2}+a_{2} { k}_{2} \\ &+2 a_{2} {\mathrm{d}}x_G { k}_{2}+a_{20} {\mathrm{d}}x_G^2 { k}_{20}+4 a_{20} { k}_{20}-4 a_{20} {\mathrm{d}}x_G { k}_{20} \\ &+a_{21} {\mathrm{d}}x_G^2 { k}_{21}+4 a_{21} { k}_{21} \\ &+4 a_{21} {\mathrm{d}}x_G { k}_{21}+a_{22} {\mathrm{d}}x_G^2 { k}_{22}+a_{22} { k}_{22} \\ &+2 a_{22} {\mathrm{d}}x_G { k}_{22}+a_{23} {\mathrm{d}}x_G^2 { k}_{23}+a_{24} {\mathrm{d}}x_G^2 { k}_{24} \\ &+a_{24} { k}_{24}-2 a_{24} {\mathrm{d}}x_G { k}_{24} \\ &+a_{25} {\mathrm{d}}x_G^2 { k}_{25}+4 a_{25} { k}_{25}-4 a_{25} {\mathrm{d}}x_G { k}_{25}+a_{3} {\mathrm{d}}x_G^2 { k}_{3} \\ &+a_{4} {\mathrm{d}}x_G^2 { k}_{4}+a_{4} { k}_{4}-2 a_{4} {\mathrm{d}}x_G { k}_{4}+a_{5} {\mathrm{d}}x_G^2 { k}_{5} \\ &+4 a_{5} { k}_{5}-4 a_{5} {\mathrm{d}}x_G { k}_{5} \\ &+a_{6} {\mathrm{d}}x_G^2 { k}_{6}+4 a_{6} { k}_{6} \\ &+4 a_{6} {\mathrm{d}}x_G { k}_{6}+a_{7} {\mathrm{d}}x_G^2 { k}_{7}+a_{7} { k}_{7} \\ &+2 a_{7} {\mathrm{d}}x_G { k}_{7}+a_{8} {\mathrm{d}}x_G^2 { k}_{8} \\ &+a_{9} {\mathrm{d}}x_G^2 { k}_{9}+a_{9} { k}_{9}-2 a_{9} {\mathrm{d}}x_G { k}_{9} \\ &+2 d_{x,2} {\lambda _*} n_{x,2} q_{11}+4 d_{x,2} n_{x,2} {\mu _{*}} q_{11} \\ &+2 d_{x,3} {\lambda _*} n_{x,3} q_{12} \\ &+4 d_{x,3} n_{x,3} {\mu _{*}} q_{12}+2 d_{x,4} {\lambda _*} n_{x,4} q_{13} \\ &+4 d_{x,4} n_{x,4} {\mu _{*}} q_{13}+2 d_{x,5} {\lambda _*} n_{x,5} q_{14} \\ &+4 d_{x,5} n_{x,5} {\mu _{*}} q_{14}+2 d_{x,6} {\lambda _*} n_{x,6} q_{15} \\ &+4 d_{x,6} n_{x,6} {\mu _{*}} q_{15}+2 d_{x,7} {\lambda _*} n_{x,7} q_{16} \\ &+4 d_{x,7} n_{x,7} {\mu _{*}} q_{16} \\ &+2 d_{x,8} {\lambda _*} n_{x,8} q_{17}+4 d_{x,8} n_{x,8} {\mu _{*}} q_{17} \\ &+2 d_{x,9} {\lambda _*} n_{x,9} q_{18}+4 d_{x,9} n_{x,9} {\mu _{*}} q_{18} \\ &+d_{x,2}^2 q_{2} +2 d_{x,2} {\lambda _*} n_{y,2} q_{29}+d_{x,3}^2 q_{3} \\ &+2 d_{x,3} {\lambda _*} n_{y,3} q_{30}+2 d_{x,4} {\lambda _*} n_{y,4} q_{31} \\ &+2 d_{x,5} {\lambda _*} n_{y,5} q_{32}+2 d_{x,6} {\lambda _*} n_{y,6} q_{33} \\ &+2 d_{x,7} {\lambda _*} n_{y,7} q_{34}+2 d_{x,8} {\lambda _*} n_{y,8} q_{35} \\ &+2 d_{x,9} {\lambda _*} n_{y,9} q_{36} \\ &+d_{x,4}^2 q_{4}+d_{x,5}^2 q_{5}+d_{x,6}^2 q_{6} \\ &+d_{x,7}^2 q_{7}+d_{x,8}^2 q_{8}+d_{x,9}^2 q_{9}). \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idesman, A., Dey, B. & Mobin, M. The 10-th order of accuracy of ‘quadratic’ elements for elastic heterogeneous materials with smooth interfaces and unfitted Cartesian meshes. Engineering with Computers 38, 4605–4629 (2022). https://doi.org/10.1007/s00366-022-01688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01688-5

Keywords

Navigation