Skip to main content
Log in

Spatial landslide susceptibility modelling using metaheuristic-based machine learning algorithms

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

To prevent and mitigate landslide risks, landslide susceptibility is an essential tool to plan and manage urban development, especially in hilly regions. This study explores two metaheuristic-algorithms, i.e., artificial bee colony (ABC), and artificial fish swarm (AFS), for the optimization of artificial neural network (ANN) model. These two algorithms are integrated with ANN model to find its optimal computational parameters for landslide susceptibility mapping in the Penang Island, Malaysia. The spatial database contains twelve landslide causative factors. In this study, 382 landslide events occurred, and they are divided into two parts: two-third for train data and one-third for test data. The pre-processing technique is frequently used in machine learning approach to enhance the efficiency of a model. Therefore, the normalization and principal component analysis (PCA) are applied on the spatial database to eliminate the redundant and overlapping instances. The mean squared error (MSE), classification accuracy (Acc), and area under the receiver operating characteristic (AUROC) curve are used to evaluate the comprehensive performance of the proposed models. The obtained AUROC value of the ABC-ANN model is 96.99%, which is higher than that of AFS-ANN (96.66%) and ANN (96.43%) models. The integrated models can produce the satisfactory results for this study area. It is deduced from the obtained results that the predictive ability of ABC-ANN model is better in optimizing the computational parameters and structure of ANN model as compared to AFS-ANN. The resulting landslide susceptibility maps offer the important information for the assessment of landslide risks in this study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Malamud BD, Turcotte DL (2006) An inverse cascade explanation for the power-law frequency-area statistics of earthquakes, landslides and wildfires. Geol Soc Lond Spec Publ 261(1):1–9. https://doi.org/10.1144/GSL.SP.2006.261.01.01

    Article  Google Scholar 

  2. Gill JC, Malamud BD (2016) Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst Dyn 7(3):659–679. https://doi.org/10.5194/esd-7-659-2016

    Article  Google Scholar 

  3. Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm, London

    Google Scholar 

  4. Hilker N, Badoux A, Hegg C (2009) The Swiss flood and landslide damage database 1972–2007. Nat Hazards Earth Syst 9(3):913–925. https://doi.org/10.5194/nhess-9-913-2009

    Article  Google Scholar 

  5. Petley D (2012) Global patterns of loss of life from landslides. Geology 40(10):927–930. https://doi.org/10.1130/G33217.1

    Article  Google Scholar 

  6. Klose M, Damm B, Terhorst B (2015) Landslide cost modeling for transportation infrastructures: a methodological approach. Landslides 12(2):321–334. https://doi.org/10.1007/s10346-014-0481-1

    Article  Google Scholar 

  7. Pradhan B (2010) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320. https://doi.org/10.1007/s12524-010-0020-z

    Article  Google Scholar 

  8. Soldato MD, Bianchini S, Calcaterra D, Vita PD, Martire DD, Tomás R, Casagli N (2017) A new approach for landslide-induced damage assessment. Geomatics Nat Hazards Risk 8(2):1524–1537. https://doi.org/10.1080/19475705.2017.1347896

    Article  Google Scholar 

  9. Ladds M, Keating A, Handmer J, Magee L (2017) How much do disasters cost? A comparison of disaster cost estimates in Australia. Int J Disaster Risk Reduct 21:419–429. https://doi.org/10.1016/j.ijdrr.2017.01.004

    Article  Google Scholar 

  10. Daniell JE, Wenzel F, Schaefer AM (2018) The use of historic loss data for insurance and total loss modeling. In: Michel G (ed) Risk modeling for hazards and disasters. Elsevier, New York, pp 107–137. https://doi.org/10.1016/B978-0-12-804071-3.00005-7

    Chapter  Google Scholar 

  11. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2):209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  12. Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7(2):725–742. https://doi.org/10.1007/s12517-012-0807-z

    Article  Google Scholar 

  13. Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H (2016) A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci 9(3):204. https://doi.org/10.1007/s12517-015-2150-7

    Article  Google Scholar 

  14. Huqqani IA, Tay LT, Mohamad-Saleh J (2019) Analysis of landslide hazard mapping of Penang island Malaysia using bivariate statistical methods. J Electr Eng Comput Sci 16(2):781–786. https://doi.org/10.11591/ijeecs.v16.i2.pp781-786

    Article  Google Scholar 

  15. Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4):272–299. https://doi.org/10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  16. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184. https://doi.org/10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  17. Lombardo L, Mai PM (2018) Presenting logistic regression-based landslide susceptibility results. Eng Geol 244:14–24. https://doi.org/10.1016/j.enggeo.2018.07.019

    Article  Google Scholar 

  18. Sun X, Chen J, Bao Y, Han X, Zhan J, Peng W (2018) Landslide susceptibility mapping using logistic regression analysis along the Jinsha River and its tributaries close to Derong and Deqin County, Southwestern China. ISPRS Int J Geo-Inf 7(11):438. https://doi.org/10.3390/ijgi7110438

    Article  Google Scholar 

  19. Guo H, Zhuang X, Chen P, Alajlan N, Rabczuk T (2022) Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis. Eng Comput. https://doi.org/10.1007/s00366-022-01633-6

    Article  Google Scholar 

  20. Guo H, Zhuang X, Chen P, Alajlan N, Rabczuk T (2022) Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media. Eng Comput. https://doi.org/10.1007/s00366-021-01586-2

    Article  Google Scholar 

  21. Guo H, Zhuang X, Rabczuk T (2019) A deep collocation method for the bending analysis of Kirchhoff plate. Comput Mater Contin 59(2):433–456. https://doi.org/10.32604/cmc.2019.06660

    Article  Google Scholar 

  22. Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh VM, Guo H, Hamdia K, Zhuang X, Rabczuk T (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790. https://doi.org/10.1016/j.cma.2019.112790

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhuang X, Guo H, Alajlan N, Zhu H, Rabczuk T (2021) Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. Eur J Mech-A Solids 87:104225. https://doi.org/10.1016/j.euromechsol.2021.104225

    Article  MathSciNet  MATH  Google Scholar 

  24. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T (2019) Artificial neural network methods for the solution of second order boundary value problems. Comput Mater Contin 59(1):345–359. https://doi.org/10.32604/cmc.2019.06641

    Article  Google Scholar 

  25. Alkhasawneh MS, Ngah UK, Tay LT, Mat-Isa NA, Al-Batah MS (2014) Modeling and testing landslide hazard using decision tree. J Appl Math 2014:929768. https://doi.org/10.1155/2014/929768

    Article  Google Scholar 

  26. Gorsevski PV, Brown MK, Panter K, Onasch CM, Simic A, Snyder J (2016) Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio. Landslides 13(3):467–484. https://doi.org/10.1007/s10346-015-0587-0

    Article  Google Scholar 

  27. Lee S, Hong SM, Jung HS (2017) A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability 9(1):48. https://doi.org/10.3390/su9010048

    Article  Google Scholar 

  28. Chen W, Pourghasemi HR, Naghibi SA (2018) Prioritization of landslide conditioning factors and its spatial modeling in Shangnan County, China using GIS-based data mining algorithms. Bull Eng Geol Environ 77(2):611–629. https://doi.org/10.1007/s10064-017-1004-9

    Article  Google Scholar 

  29. Polykretis C, Chalkias C, Ferentinou M (2019) Adaptive neuro-fuzzy inference system (ANFIS) modeling for landslide susceptibility assessment in a Mediterranean hilly area. Bull Eng Geol Environ 78(2):1173–1187. https://doi.org/10.1007/s10064-017-1125-1

    Article  Google Scholar 

  30. Huqqani IA, Tay LT, Mohamad-Saleh J (2021) Landslide hazard analysis using a multilayered approach based on various input data configurations. Geosfera Indones 6(1):20–39. https://doi.org/10.19184/geosi.v6i1.23347

    Article  Google Scholar 

  31. Chen W, Panahi M, Pourghasemi HR (2017) Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena 157:310–324. https://doi.org/10.1016/j.catena.2017.05.034

    Article  Google Scholar 

  32. Tien Bui D, Shahabi H, Shirzadi A, Chapi K, Hoang ND, Pham BT, Bui QT, Tran CT, Panahi M, Bin Ahmad B, Lee S (2018) A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sens 10(10):1538. https://doi.org/10.3390/rs10101538

    Article  Google Scholar 

  33. Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B (2019) Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput 35(3):967–984. https://doi.org/10.1007/s00366-018-0644-0

    Article  Google Scholar 

  34. Chen W, Chen X, Peng J, Panahi M, Lee S (2021) Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front 12(1):93–107. https://doi.org/10.1016/j.gsf.2020.07.012

    Article  Google Scholar 

  35. Hong H, Tsangaratos P, Ilia I, Loupasakis C, Wang Y (2020) Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping. Sci Total Environ 742:140549. https://doi.org/10.1016/j.scitotenv.2020.140549

    Article  Google Scholar 

  36. Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Appl Math Comput 214(1):108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  37. Onwunalu JE, Durlofsky LJ (2010) Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput Geosci 14(1):183–198. https://doi.org/10.1007/s10596-009-9142-1

    Article  MATH  Google Scholar 

  38. He Q, Hu X, Ren H, Zhang H (2015) A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem. ISA Trans 59:105–113. https://doi.org/10.1016/j.isatra.2015.09.015

    Article  Google Scholar 

  39. Amin N, Marowan AQ, Ghosh BC (2015) Application of genetic algorithm in power system optimization with multi-type FACTS. Int J Sci Res Publ 7(5):748-754. http://www.ijsrp.org/research-paper-0517.php?rp=P656445

  40. Padhy S, Panda S (2021) Application of a simplified grey wolf optimization technique for adaptive fuzzy PID controller design for frequency regulation of a distributed power generation system. Prot Control Mod Power Syst 6(1):2. https://doi.org/10.1186/s41601-021-00180-4

    Article  Google Scholar 

  41. Moayedi H, Mehrabi M, Kalantar B, Mu’azu MA, Rashid ASA, Foong LK, Nguyen H (2019) Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide. Geomatics Nat Hazards Risk 10(1):1879–1911. https://doi.org/10.1080/19475705.2019.1650126

    Article  Google Scholar 

  42. Nguyen VV, Pham BT, Vu BT, Prakash I, Jha S, Shahabi H, Shirzadi A, Ba DN, Kumar R, Chatterjee JM, Tien Bui D (2019) Hybrid machine learning approaches for landslide susceptibility modeling. Forests 10(2):157. https://doi.org/10.3390/f10020157

    Article  Google Scholar 

  43. Chen W, Hong H, Panahi M, Shahabi H, Wang Y, Shirzadi A, Pirasteh S, Alesheikh AA, Khosravi K, Panahi S, Rezaie F, Li S, Jaafari A, Bui DT, Bin Ahmad B (2019) Spatial prediction of landslide susceptibility using GIS-based data mining techniques of ANFIS with whale optimization algorithm (WOA) and grey wolf optimizer (GWO). Appl Sci 9(18):3755. https://doi.org/10.3390/app9183755

    Article  Google Scholar 

  44. Jaafari A, Panahi M, Pham BT, Shahabi H, Bui DT, Rezaie F, Lee S (2019) Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena 175:430–445. https://doi.org/10.1016/j.catena.2018.12.033

    Article  Google Scholar 

  45. Tien Bui D, Nguyen QP, Hoang ND, Klempe H (2017) A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 14:1–17. https://doi.org/10.1007/s10346-016-0708-4

    Article  Google Scholar 

  46. Varnes DJ (1978) Slope movement types and processes. In: Special report 176: National Academy of Science, Washington DC, pp 11–33. http://onlinepubs.trb.org/Onlinepubs/sr/sr176/176-002.pdf

  47. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  48. He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, Chai H, Bian H, Ma J, Chen Y, Wang X, Chapi K, Ahmad BB (2019) Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Sci Total Environ 663:1–15. https://doi.org/10.1016/j.scitotenv.2019.01.329

    Article  Google Scholar 

  49. Ali S, Biermanns P, Haider R, Reicherter K (2019) Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat Hazards Earth Syst Sci 19(5):999–1022. https://doi.org/10.5194/nhess-19-999-2019

    Article  Google Scholar 

  50. Arabameri A, Pradhan B, Rezaei K, Lee CW (2019) Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR-RF integrated model and multiresolution DEMs. Remote Sens 11(9):999. https://doi.org/10.3390/rs11090999

    Article  Google Scholar 

  51. van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e

    Article  Google Scholar 

  52. Kumar V, Gupta V, Sundriyal YP (2019) Spatial interrelationship of landslides, litho-tectonics, and climate regime, Satluj valley, Northwest Himalaya. Geol J 54(1):537–551. https://doi.org/10.1002/gj.3204

    Article  Google Scholar 

  53. Wang X, Huang Z, Hong MM, Zhao YF, Ou YS, Zhang J (2019) A comparison of the effects of natural vegetation regrowth with a plantation scheme on soil structure in a geological hazard-prone region. Eur J Soil Sci 70(3):674–685. https://doi.org/10.1111/ejss.12781

    Article  Google Scholar 

  54. Yang Z, Cai H, Shao W, Huang D, Uchimura T, Lei X, Tian H, Qiao J (2019) Clarifying the hydrological mechanisms and thresholds for rainfall-induced landslide: in situ monitoring of big data to unsaturated slope stability analysis. Bull Eng Geol Environ 78(4):2139–2150. https://doi.org/10.1007/s10064-018-1295-5

    Article  Google Scholar 

  55. Chen FW, Liu CW (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ 10(3):209–222. https://doi.org/10.1007/s10333-012-0319-1

    Article  Google Scholar 

  56. Hu X, Zhang H, Mei H, Xiao D, Li Y, Li M (2020) Landslide susceptibility mapping using the stacking ensemble machine learning method in Lushui, Southwest China. Appl Sci 10:4016. https://doi.org/10.3390/app10114016

    Article  Google Scholar 

  57. Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Han Z, Pham BT (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17:641–658. https://doi.org/10.1007/s10346-019-01286-5

    Article  Google Scholar 

  58. Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23. https://doi.org/10.1016/j.enggeo.2011.09.011

    Article  Google Scholar 

  59. Shalabi LA, Zyad S, Kasasbeh B (2006) Data mining: a preprocessing engine. J Comput Sci 2(9):735–739. https://doi.org/10.3844/jcssp.2006.735.739

    Article  Google Scholar 

  60. Riba Ruiz J, Canals T, Cantero Gomez R (2012) Comparative study of multivariate methods to identify paper finishes using infrared spectroscopy. IEEE Trans Instrum Meas 61(4):1029–1036. https://doi.org/10.1109/TIM.2011.2173048

    Article  Google Scholar 

  61. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci 374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  MathSciNet  MATH  Google Scholar 

  62. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  63. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech Rep TR06, Erciyes Univ, p 10. http://abc.erciyes.edu.tr/pub/tr06_2005.pdf

  64. Karaboga N (2009) A new design method based on artificial bee colony algorithm for digital IIR filters. J Franklin Inst 346(4):328–348. https://doi.org/10.1016/j.jfranklin.2008.11.003

    Article  MathSciNet  MATH  Google Scholar 

  65. Bahamish H, Abdullah R, Abdul Salam R (2009) Protein tertiary structure prediction using artificial bee colony algorithm. In: \(3^{rd}\) Asia international conference on modelling and simulation, pp 258–263. https://doi.org/10.1109/AMS.2009.47

  66. Karaboga D, Akay B, Ozturk C (2007) Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks. In: Torra V, Narukawa Y, Yoshida Y (eds) Modeling decisions for artificial intelligence. Springer, Berlin, pp 318–329

    Chapter  Google Scholar 

  67. Javed A, Larijani H, Ahmadinia A, Emmanuel R (2017) Random neural network learning heuristics. Probab Eng Inf Sci 31(4):436–456. https://doi.org/10.1017/S0269964817000201

    Article  MathSciNet  MATH  Google Scholar 

  68. Xiaolei L, Zhijiang S, Jixin Q (2002) An optimizing method based on autonomous animats: Fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38. http://www.sysengi.com/CN/Y2002/V22/I11/32

  69. Lei X, Ouyang H, Xu L (2018) Image segmentation based on equivalent three-dimensional entropy method and artificial fish swarm optimization algorithm. Opt Eng 57(10):103106. https://doi.org/10.1117/1.OE.57.10.103106

    Article  Google Scholar 

  70. Tsai HC, Lin YH (2011) Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl Soft Comput 11(8):5367–5374. https://doi.org/10.1016/j.asoc.2011.05.022

    Article  Google Scholar 

  71. Li H, Huang Y, Tian S (2019) Risk probability predictions for coal enterprise infrastructure projects in countries along the Belt and Road Initiative. Int J Ind Ergon 69:110–117. https://doi.org/10.1016/j.ergon.2018.10.006

    Article  Google Scholar 

  72. Chung CJF, Fabbri A (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389-1399. https://www.asprs.org/wp-content/uploads/pers/1999journal/dec/1999_dec_1389-1399.pdf

  73. Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J 22(3):643–662. https://doi.org/10.1007/s10040-013-1089-6

    Article  Google Scholar 

  74. Pham BT, Prakash I (2019) Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping. Geocarto Int 34(3):316–333. https://doi.org/10.1080/10106049.2017.1404141

    Article  Google Scholar 

  75. Jaafari A (2018) LiDAR-supported prediction of slope failures using an integrated ensemble weights-of-evidence and analytical hierarchy process. Environ Earth Sci 77:42. https://doi.org/10.1007/s12665-017-7207-3

    Article  Google Scholar 

  76. Pham BT, Jaafari A, Prakash I, Bui DT (2019) A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bull Eng Geol Environ 78:2865–2886. https://doi.org/10.1007/s10064-018-1281-y

    Article  Google Scholar 

  77. Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 12:361–378. https://doi.org/10.1007/s10346-015-0557-6

    Article  Google Scholar 

  78. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  79. Ahlgren P, Jarneving B, Rousseau R (2003) Requirements for a cocitation similarity measure, with special reference to Pearson’s correlation coefficient. J Am Soc Inf Sci 54:550–560. https://doi.org/10.1002/asi.10242

    Article  Google Scholar 

  80. Liao D, Valliant R (2012) Variance inflation factors in the analysis of complex survey data. Surv Methodol 38:53–62

    Google Scholar 

  81. Belsley DA (1991) A Guide to using the collinearity diagnostics. Comput Sci Econ Manage 4:33–50. https://doi.org/10.1007/BF00426854

    Article  MathSciNet  MATH  Google Scholar 

  82. Schuerman J (1983) Principal components analysis. Multivariate analysis in the human services. Springer, Netherlands, pp 93–119

    Google Scholar 

  83. Allison PD (1999) Logistic regression using the SAS system: theory and application. SAS Institute Inc, USA

    Google Scholar 

  84. Hair JF, Black WC, Babin BJ, Anderson RE (2013) Multivariate data analysis. Prentice Hall, New York

    Google Scholar 

  85. Hu X, Huang C, Mei H, Zhang H (2021) Landslide susceptibility mapping using an ensemble model of Bagging scheme and random subspace-based naïve Bayes tree in Zigui County of the Three Gorges Reservoir Area, China. Bull Eng Geol Environ 80:5315–5329. https://doi.org/10.1007/s10064-021-02275-6

    Article  Google Scholar 

  86. Székely GJ, Rizzo ML, Bakirov NK (2007) Measuring and testing dependence by correlation of distances. Ann Stat 35(6):2769–2794. https://doi.org/10.1214/009053607000000505

    Article  MathSciNet  MATH  Google Scholar 

  87. Székely GJ, Rizzo ML (2009) Brownian distance covariance. Ann Appl Stat 3(4):1236–1265. https://doi.org/10.1214/09-AOAS312

    Article  MathSciNet  MATH  Google Scholar 

  88. Székely GJ, Rizzo ML (2012) On the uniqueness of distance covariance. Stat Probab Lett 82(12):2278–2282. https://doi.org/10.1016/j.spl.2012.08.007

    Article  MathSciNet  MATH  Google Scholar 

  89. Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013) Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann Stat 41(5):2263–2291. https://doi.org/10.1214/13-AOS1140

    Article  MathSciNet  MATH  Google Scholar 

  90. Gromenko O, Kokoszka P, Zhu L, Sojka J (2012) Estimation and testing for spatially indexed curves with application to ionospheric and magnetic field trends. Ann Appl Stat 6(2):669–696. http://www.jstor.org/stable/41713469

  91. Dueck J, Edelmann D, Gneiting t, Richards D (2014) The affinely invariant distance correlation. Bernoulli 20(4):2305–2330. https://doi.org/10.3150/13-BEJ558

    Article  MathSciNet  MATH  Google Scholar 

  92. Racherla PN, Shindell DT, Faluvegi GS (2012) The added value to global model projections of climate change by dynamical downscaling: a case study over the continental US using the GISS-ModelE2 and WRF models. J Geophys Res Atmos 117:D20. https://doi.org/10.1029/2012JD018091

    Article  Google Scholar 

  93. Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41(6):720–730. https://doi.org/10.1007/s00254-001-0454-2

    Article  Google Scholar 

  94. Egan JP (1975) Signal detection theory and ROC-analysis. Academic Press, New York

    Google Scholar 

  95. Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054. https://doi.org/10.1007/s12665-009-0245-8

    Article  Google Scholar 

Download references

Funding

This research is funded by Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code: FRGS/1/2018/TK04/USM/02/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Tien Tay.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huqqani, I.A., Tay, L.T. & Mohamad-Saleh, J. Spatial landslide susceptibility modelling using metaheuristic-based machine learning algorithms. Engineering with Computers 39, 867–891 (2023). https://doi.org/10.1007/s00366-022-01695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01695-6

Keywords