Skip to main content
Log in

Nonlocal modeling of bi-material and modulus graded plates using peridynamic differential operator

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study presents the application of the peridynamic differential operator (PDDO) on modeling of bi-material plates with/without modulus graded regions. The PDDO converts the Navier’s equilibrium equations and boundary conditions from the differential form into the integral form. The mismatch of the stiffness along the interface of two distinct materials results in an increase in the strain and stress variations, leading to the onset of cracking at the free corners of the interface. The interfacial strains and stresses can be mitigated by inserting a modulus graded layer between two different materials. The material properties in the modulus graded region is achieved through the power-law distribution. The efficacy of the proposed approach is demonstrated by considering a bi-material square plate under tension. The PDDO displacement, strain, and stress predictions are compared with the reference solutions, and good correlations are achieved. The influence of a modulus graded region with/without a pre-existing crack located between dissimilar materials is investigated for different material variations. It is noted that the PDDO performs very well on the displacement, strain, and stress predictions even if the solution domain has geometrical or material discontinuities. Moreover, modulus graded regions offer some advantages over the sharp interfaces and alleviate the strain and stress concentrations along the interface of the dissimilar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang W, De Freitas ST, Poulis JA, Zarouchas D (2021) A review of experimental and theoretical fracture characterization of bi-material bonded joints. Compos B Eng 206:108537. https://doi.org/10.1016/j.compositesb.2020.108537

    Article  Google Scholar 

  2. Jiang S, Gu Y, Fan C-M, Qu W (2021) Fracture mechanics analysis of bimaterial interface cracks using the generalized finite difference method. Theor Appl Fract Mech 113:102942. https://doi.org/10.1016/j.tafmec.2021.102942

    Article  Google Scholar 

  3. Elishakoff I, Pentaras D, Gentilini C (2016) Mechanics of functionally graded material structures. World Scientific, Singapore

    MATH  Google Scholar 

  4. Erdogan F (1995) Fracture mechanics of functionally graded materials. Compos Eng 5:753–770. https://doi.org/10.1016/0961-9526(95)00029-M

    Article  Google Scholar 

  5. Çömez İ, Aribas UN, Kutlu A, Omurtag MH (2021) An exact elasticity solution for monoclinic functionally graded beams. Arab J Sci Eng 46:5135–5155. https://doi.org/10.1007/s13369-021-05434-9

    Article  Google Scholar 

  6. Çömez İ, Aribas UN, Kutlu A, Omurtag MH (2022) Two-dimensional solution of functionally graded piezoelectric-layered beams. J Braz Soc Mech Sci Eng 44:101. https://doi.org/10.1007/s40430-022-03414-0

    Article  Google Scholar 

  7. Li L, Zhang X, Cui W, Liou F, Deng W, Li W (2020) Temperature and residual stress distribution of FGM parts by DED process: modeling and experimental validation. Int J Adv Manuf Technol 109:451–462. https://doi.org/10.1007/s00170-020-05673-4

    Article  Google Scholar 

  8. Baytak T, Bulut O (2022) Thermal Stress in Functionally Graded Plates with a Gradation of the Coefficient of Thermal Expansion Only. Exp Mech. https://doi.org/10.1007/s11340-021-00818-2

    Article  Google Scholar 

  9. Wang X, Chen K (2021) Determination of complex stress intensity factors for interface cracks in bi-material specimens subjected to ununiform stresses. Eng Fract Mech 246:107619. https://doi.org/10.1016/j.engfracmech.2021.107619

    Article  Google Scholar 

  10. Aribas UN, Ermis M, Omurtag MH (2021) The static and stress analyses of axially functionally graded exact super-elliptical beams via mixed FEM. Arch Appl Mech 91:4783–4796. https://doi.org/10.1007/s00419-021-02033-w

    Article  Google Scholar 

  11. Dorduncu M, Apalak MK (2016) Stress wave propagation in adhesively bonded functionally graded circular cylinders. J Adhes Sci Technol 30:1281–1309. https://doi.org/10.1080/01694243.2016.1143147

    Article  Google Scholar 

  12. Kirugulige MS, Kitey R, Tippur HV (2005) Dynamic fracture behavior of model sandwich structures with functionally graded core: a feasibility study. Compos Sci Technol 65:1052–1068. https://doi.org/10.1016/j.compscitech.2004.10.029

    Article  Google Scholar 

  13. Torshizian MR, Kargarnovin MH, Nasirai C (2011) Mode III fracture of an arbitrary oriented crack in two dimensional functionally graded material. Mech Res Commun 38:164–169. https://doi.org/10.1016/j.mechrescom.2011.03.004

    Article  MATH  Google Scholar 

  14. Rabczuk T, Belytschko T (2004) Cracking particles: A simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61:2316–2343. https://doi.org/10.1002/nme.1151

    Article  MATH  Google Scholar 

  15. Tvergaard V (2002) Theoretical investigation of the effect of plasticity on crack growth along a functionally graded region between dissimilar elastic–plastic solids. Eng Fract Mech 69:1635–1645. https://doi.org/10.1016/S0013-7944(02)00051-6

    Article  Google Scholar 

  16. Kubair DV, Bhanu-Chandar B (2007) Mode-3 spontaneous crack propagation along functionally graded bimaterial interfaces. J Mech Phys Solids 55:1145–1165. https://doi.org/10.1016/j.jmps.2006.12.002

    Article  MATH  Google Scholar 

  17. Jin Z-H, Paulino GH, Dodds RH Jr (2002) Finite element investigation of quasi-static crack growth in functionally graded materials using a novel cohesive zone fracture model. J Appl Mech 69:370–379. https://doi.org/10.1115/1.1467092

    Article  MATH  Google Scholar 

  18. Shim D-J, Paulino GH, Dodds RH (2006) J resistance behavior in functionally graded materials using cohesive zone and modified boundary layer models. Int J Fract 139:91–117. https://doi.org/10.1007/s10704-006-0024-4

    Article  MATH  Google Scholar 

  19. Dorduncu M (2020) Peridynamic modeling of delaminations in laminated composite beams using refined zigzag theory. Theor Appl Fracture Mech. https://doi.org/10.1016/j.tafmec.2020.102832

    Article  Google Scholar 

  20. Rabczuk T, Song J-H, Zhuang X (2019) Anitescu C (2019) Extended finite element and meshfree methods, 1st edn. Academic Press, London

    Google Scholar 

  21. Dorduncu M, Barut A, Madenci E, Phan ND (2017) Peridynamic augmented XFEM. In: 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, American Institute of Aeronautics and Astronautics; 2017. https://doi.org/10.2514/6.2017-0656

  22. Noël L, Miegroet LV, Duysinx P (2016) Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures. Int J Numer Methods Eng 107:669–695. https://doi.org/10.1002/nme.5181

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu XF, Wang JN, Yao WA (2016) A size independent enriched finite element for the modeling of bimaterial interface cracks. Comput Struct 172:1–10. https://doi.org/10.1016/j.compstruc.2016.05.005

    Article  Google Scholar 

  24. Comi C, Mariani S (2007) Extended finite element simulation of quasi-brittle fracture in functionally graded materials. Comput Methods Appl Mech Eng 196:4013–4026. https://doi.org/10.1016/j.cma.2007.02.014

    Article  MATH  Google Scholar 

  25. Jin X, Wu L, Guo L, Yu H, Sun Y (2009) Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials. Eng Fract Mech 76:1800–1810. https://doi.org/10.1016/j.engfracmech.2009.04.003

    Article  Google Scholar 

  26. Dirik H, Yalçinkaya T (2018) Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM. Int J Fatigue 114:34–50. https://doi.org/10.1016/j.ijfatigue.2018.04.026

    Article  Google Scholar 

  27. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209. https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheng Z, Zhang G, Wang Y, Bobaru F (2015) A peridynamic model for dynamic fracture in functionally graded materials. Compos Struct 133:529–546. https://doi.org/10.1016/j.compstruct.2015.07.047

    Article  Google Scholar 

  29. Candaş A, Oterkus E, İmrak CE (2021) Peridynamic simulation of dynamic fracture in functionally graded materials subjected to impact load. Eng Comput. https://doi.org/10.1007/s00366-021-01540-2

    Article  Google Scholar 

  30. Dorduncu M, Barut A, Madenci E (2015) Ordinary-state based peridynamic truss element. In: 56th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Kissimmee, Florida: American Institute of Aeronautics and Astronautics; 2015. https://doi.org/10.2514/6.2015-0465

  31. Dorduncu M, Barut A, Madenci E (2016) Peridynamic truss element for viscoelastic deformation. In: 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, San Diego, California: American Institute of Aeronautics and Astronautics; 2016. https://doi.org/10.2514/6.2016-1721

  32. Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631. https://doi.org/10.1016/j.cma.2018.03.038

    Article  MathSciNet  MATH  Google Scholar 

  33. Madenci E, Dorduncu M, Barut A, Phan N (2018) A state-based peridynamic analysis in a finite element framework. Eng Fract Mech 195:104–128. https://doi.org/10.1016/j.engfracmech.2018.03.033

    Article  Google Scholar 

  34. Madenci E, Dorduncu M, Phan N, Gu X (2019) Weak form of bond-associated non-ordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization. Eng Fract Mech 218:106613. https://doi.org/10.1016/j.engfracmech.2019.106613

    Article  Google Scholar 

  35. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elasticity 88:151–184. https://doi.org/10.1007/s10659-007-9125-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New York

    Book  MATH  Google Scholar 

  37. Bobaru F, Foster JT, Geubelle PH, Silling SA (eds) (2017) Handbook of peridynamic modeling. CRC Press Taylor, Boca Raton

    MATH  Google Scholar 

  38. Madenci E, Barut A, Dorduncu M (2019) Peridynamic differential operator for numerical analysis. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-030-02647-9

    Book  MATH  Google Scholar 

  39. Dorduncu M, Madenci E (2022) Finite element implementation of ordinary state-based peridynamics with variable horizon. Eng Comput. https://doi.org/10.1007/s00366-022-01641-6

    Article  Google Scholar 

  40. Nguyen HA, Wang H, Tanaka S, Oterkus S, Oterkus E (2021) An in-depth investigation of bimaterial interface modeling using ordinary state-based peridynamics. J Peridyn Nonlocal Model. https://doi.org/10.1007/s42102-021-00058-x

    Article  Google Scholar 

  41. He D, Huang D, Jiang D (2021) Modeling and studies of fracture in functionally graded materials under thermal shock loading using peridynamics. Theor Appl Fract Mech 111:102852. https://doi.org/10.1016/j.tafmec.2020.102852

    Article  Google Scholar 

  42. Yang Z, Oterkus E, Oterkus S (2021) Analysis of functionally graded timoshenko beams by using peridynamics. J Peridyn Nonlocal Model 3:148–166. https://doi.org/10.1007/s42102-020-00044-9

    Article  MathSciNet  MATH  Google Scholar 

  43. Ozdemir M, Imachi M, Tanaka S, Oterkus S, Oterkus E (2022) A comprehensive investigation on macro–micro crack interactions in functionally graded materials using ordinary-state based peridynamics. Compos Struct 287:115299. https://doi.org/10.1016/j.compstruct.2022.115299

    Article  Google Scholar 

  44. Wang H, Tanaka S, Oterkus S, Oterkus E (2022) Fracture parameter investigations of functionally graded materials by using ordinary state based peridynamics. Eng Anal Boundary Elem 139:180–191. https://doi.org/10.1016/j.enganabound.2022.03.005

    Article  MathSciNet  MATH  Google Scholar 

  45. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782. https://doi.org/10.1016/j.cma.2016.12.031

    Article  MathSciNet  MATH  Google Scholar 

  46. Hu Y, Chen H, Spencer BW, Madenci E (2018) Thermomechanical peridynamic analysis with irregular non-uniform domain discretization. Eng Fract Mech 197:92–113. https://doi.org/10.1016/j.engfracmech.2018.02.006

    Article  Google Scholar 

  47. Dorduncu M, Olmus I, Rabczuk T (2022) A peridynamic approach for modeling of two dimensional functionally graded plates. Compos Struct 279:114743. https://doi.org/10.1016/j.compstruct.2021.114743

    Article  Google Scholar 

  48. Madenci E, Dorduncu M, Gu X (2019) Peridynamic least squares minimization. Comput Methods Appl Mech Eng 348:846–874. https://doi.org/10.1016/j.cma.2019.01.032

    Article  MathSciNet  MATH  Google Scholar 

  49. Madenci E, Dorduncu M, Barut A, Futch M (2017) Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator. Numer Methods Partial Differ Equ 33:1726–1753. https://doi.org/10.1002/num.22167

    Article  MathSciNet  MATH  Google Scholar 

  50. Dorduncu M (2020) Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin Walled Struct 146:106468. https://doi.org/10.1016/j.tws.2019.106468

    Article  Google Scholar 

  51. Dorduncu M, Kaya K, Ergin OF (2020) Peridynamic analysis of laminated composite plates based on first-order shear deformation theory. Int J Appl Mech 12:2050031–2050031. https://doi.org/10.1142/S1758825120500313

    Article  Google Scholar 

  52. Dorduncu M (2020) Peridynamic modeling of adhesively bonded beams with modulus graded adhesives using refined zigzag theory. Int J Mech Sci 185:105866. https://doi.org/10.1016/j.ijmecsci.2020.105866

    Article  Google Scholar 

  53. Kutlu A, Dorduncu M, Rabczuk T (2021) A novel mixed finite element formulation based on the refined zigzag theory for the stress analysis of laminated composite plates. Compos Struct 267:113886. https://doi.org/10.1016/j.compstruct.2021.113886

    Article  Google Scholar 

  54. Kutlu A (2021) Mixed finite element formulation for bending of laminated beams using the refined zigzag theory. Proc Inst Mech Eng Part L J Mater Des Appl 235:1712–1722. https://doi.org/10.1177/14644207211018839

    Article  Google Scholar 

  55. Behera D, Roy P, Madenci E (2021) Peridynamic modeling of bonded-lap joints with viscoelastic adhesives in the presence of finite deformation. Comput Methods Appl Mech Eng 374:113584. https://doi.org/10.1016/j.cma.2020.113584

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with the project number: 219M207. This support is gratefully acknowledged. Also, Dr. Dorduncu and Dr. Kutlu acknowledge the funding support was granted by the German Academic Exchange Service (DAAD) and TUBITAK-BIDEB under International Post-Doctoral Research Fellowship Programme 2219, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Dorduncu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to Eq. (8), the PD differential operator for two-dimensional domains and up to second-order derivatives may be generated by addressing a scalar field's \((f\left( {{\mathbf{x^{\prime}}}} \right) = f\left( {{\mathbf{x + \xi }}} \right))\) Taylor series expansion, in the form:

$$f\left( {{\mathbf{x + \xi }}} \right) = f\left( {\mathbf{x}} \right) + \xi_{1}^{{}} \frac{{\partial f\left( {\mathbf{x}} \right)}}{{\partial x_{1}^{{}} }} + \xi_{2}^{{}} \frac{{\partial f\left( {\mathbf{x}} \right)}}{{\partial x_{2}^{{}} }} + \frac{1}{2!}\xi_{1}^{2} \frac{{\partial^{2} f\left( {\mathbf{x}} \right)}}{{\partial x_{1}^{2} }} + \frac{1}{2!}\xi_{2}^{2} \frac{{\partial^{2} f\left( {\mathbf{x}} \right)}}{{\partial x_{2}^{2} }} + \xi_{1}^{{}} \xi_{2}^{{}} \frac{{\partial^{2} f\left( {\mathbf{x}} \right)}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }}.$$
(48)

After multiplying each term in this formula by the PD functions, \(g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}})\) with \((p_{1} ,p_{2} = 0,1,2)\) and performing integration over the family, \(H_{{\mathbf{x}}}\) of point \({\mathbf{x}}\) results with

$$\begin{gathered} \int\limits_{{H_{{\mathbf{x}}} }} {f({\mathbf{x}} + {{\varvec{\upxi}}}) \, g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} = f\left( {\mathbf{x}} \right)\int\limits_{{H_{{\mathbf{x}}} }} {g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} + \frac{{\partial f\left( {\mathbf{x}} \right)}}{{\partial x_{1}^{{}} }}\int\limits_{{H_{{\mathbf{x}}} }} {\xi_{1}^{{}} g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} + \frac{{\partial f\left( {\mathbf{x}} \right)}}{{\partial x_{2}^{{}} }}\int\limits_{{H_{{\mathbf{x}}} }} {\xi_{2}^{{}} g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} \hfill \\ \quad \quad \qquad \quad + \frac{{\partial^{2} f\left( {\mathbf{x}} \right)}}{{\partial x_{1}^{2} }}\int\limits_{{H_{{\mathbf{x}}} }} {\frac{1}{2!}\xi_{1}^{2} \, g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} + \frac{{\partial^{2} f\left( {\mathbf{x}} \right)}}{{\partial x_{2}^{2} }}\int\limits_{{H_{{\mathbf{x}}} }} {\frac{1}{2!}\xi_{2}^{2} g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} + \frac{{\partial^{2} f\left( {\mathbf{x}} \right)}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }}\int\limits_{{H_{{\mathbf{x}}} }} {\xi_{1}^{{}} \xi_{2}^{{}} g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} . \hfill \\ \end{gathered}$$
(49)

The orthogonality property of PD functions, \(g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}})\) indicated by Eq. (10) can be represented as

$$\frac{1}{{n_{1} !n_{2} !}}\int\limits_{{H_{{\mathbf{x}}} }} {\xi_{1}^{{n_{1} }} \xi_{2}^{{n_{2} }} g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}){\text{d}}A} = \delta_{{n_{1} p_{1} }} \delta_{{n_{2} p_{2} }} \;{\text{with }}(n_{1} ,n_{2} ,p_{1} ,p_{2} = 0,1,2).$$
(50)

Substituting the orthogonality conditions into Eq. (49) yields the explicit representation of the PD forms of the partial derivatives as

$$\left\{ {\begin{array}{*{20}c} {f({\mathbf{x}})} \\ {\frac{{\partial f({\mathbf{x}})}}{{\partial x_{1}^{{}} }}} \\ {\frac{{\partial f({\mathbf{x}})}}{{\partial x_{2}^{{}} }}} \\ {\frac{{\partial^{2} f({\mathbf{x}})}}{{\partial x_{1}^{2} }}} \\ {\frac{{\partial^{2} f({\mathbf{x}})}}{{\partial x_{2}^{2} }}} \\ {\frac{{\partial^{2} f({\mathbf{x}})}}{{\partial x_{1}^{{}} \partial x_{2}^{{}} }}} \\ \end{array} } \right\} = \int\limits_{{H_{{\mathbf{x}}} }} {f({\mathbf{x}} + {{\varvec{\upxi}}}) \, \left\{ {\begin{array}{*{20}c} {g_{2}^{00} ({{\varvec{\upxi}}})} \\ {g_{2}^{10} ({{\varvec{\upxi}}})} \\ {g_{2}^{01} ({{\varvec{\upxi}}})} \\ {g_{2}^{20} ({{\varvec{\upxi}}})} \\ {g_{2}^{02} ({{\varvec{\upxi}}})} \\ {g_{2}^{11} ({{\varvec{\upxi}}})} \\ \end{array} } \right\}{\text{d}}A} .$$
(51)

The PD functions can be generated in the form of polynomials by regarding Eq. (11):

$$\begin{gathered} g_{2}^{{p_{1} p_{2} }} ({{\varvec{\upxi}}}) = a_{00}^{{p_{1} p_{2} }} \,w_{00} \left( {\left| {{\varvec{\upxi}}} \right|} \right) + a_{10}^{{p_{1} p_{2} }} \,w_{10} \left( {\left| {{\varvec{\upxi}}} \right|} \right)\xi_{1}^{{}} + a_{01}^{{p_{1} p_{2} }} \,w_{01} \left( {\left| {{\varvec{\upxi}}} \right|} \right)\xi_{2}^{{}} \hfill \\ \quad + a_{20}^{{p_{1} p_{2} }} \,w_{20} \left( {\left| {{\varvec{\upxi}}} \right|} \right)\xi_{1}^{2} + a_{02}^{{p_{1} p_{2} }} \,w_{02} \left( {\left| {{\varvec{\upxi}}} \right|} \right)\xi_{2}^{2} + a_{11}^{{p_{1} p_{2} }} \,w_{11} \left( {\left| {{\varvec{\upxi}}} \right|} \right)\xi_{1}^{{}} \xi_{2}^{{}} . \hfill \\ \end{gathered}$$
(52)

The weight functions, \(w_{{p_{1} p_{2} }} \left( {\left| {{\varvec{\upxi}}} \right|} \right)\) may be determined as \(w_{{p_{1} p_{2} }} \left( {\left| {{\varvec{\upxi}}} \right|} \right) = w\left( {\left| {{\varvec{\upxi}}} \right|} \right)\) for simplicity yet it is not an obligation. By invoking this option, the orthogonality property of the PD functions demands that

$${\mathbf{Aa}} = {\mathbf{b}},$$
(53)

where the PD shape matrix, \({\mathbf{A}}\), the matrix of unknown coefficients, \({\mathbf{a}}\), and the matrix of known constants, \({\mathbf{b}}\) can be given as

$${\mathbf{A}} = \int\limits_{{H_{{\mathbf{x}}} }} {w\left( {\left| {{\varvec{\upxi}}} \right|} \right)\left[ {\begin{array}{*{20}c} 1 & {\xi_{1}^{{}} } & {\xi_{2}^{{}} } & {\xi_{1}^{2} } & {\xi_{2}^{2} } & {\xi_{1}^{{}} \xi_{2}^{{}} } \\ {\xi_{1}^{{}} } & {\xi_{1}^{2} } & {\xi_{1}^{{}} \xi_{2}^{{}} } & {\xi_{1}^{3} } & {\xi_{1}^{{}} \xi_{2}^{2} } & {\xi_{1}^{2} \xi_{2}^{{}} } \\ {\xi_{2}^{{}} } & {\xi_{1}^{{}} \xi_{2}^{{}} } & {\xi_{2}^{2} } & {\xi_{1}^{2} \xi_{2}^{{}} } & {\xi_{2}^{3} } & {\xi_{1}^{{}} \xi_{2}^{2} } \\ {\xi_{1}^{2} } & {\xi_{1}^{3} } & {\xi_{1}^{2} \xi_{2}^{{}} } & {\xi_{1}^{4} } & {\xi_{1}^{2} \xi_{2}^{2} } & {\xi_{1}^{3} \xi_{2}^{{}} } \\ {\xi_{2}^{2} } & {\xi_{1}^{{}} \xi_{2}^{2} } & {\xi_{2}^{3} } & {\xi_{1}^{2} \xi_{2}^{2} } & {\xi_{2}^{4} } & {\xi_{1}^{{}} \xi_{2}^{3} } \\ {\xi_{1}^{{}} \xi_{2}^{{}} } & {\xi_{1}^{2} \xi_{2}^{{}} } & {\xi_{1}^{{}} \xi_{2}^{2} } & {\xi_{1}^{3} \xi_{2}^{{}} } & {\xi_{1}^{{}} \xi_{2}^{3} } & {\xi_{1}^{2} \xi_{2}^{2} } \\ \end{array} } \right] \, {\text{d}}A}$$
(54)
$${\mathbf{a}} = \left[ {\begin{array}{*{20}c} {a_{00}^{00} } & {a_{00}^{10} } & {a_{00}^{01} } & {a_{00}^{20} } & {a_{00}^{02} } & {a_{00}^{11} } \\ {a_{10}^{00} } & {a_{10}^{10} } & {a_{10}^{01} } & {a_{10}^{20} } & {a_{10}^{02} } & {a_{10}^{11} } \\ {a_{01}^{00} } & {a_{01}^{10} } & {a_{01}^{01} } & {a_{01}^{20} } & {a_{01}^{02} } & {a_{01}^{11} } \\ {a_{20}^{00} } & {a_{20}^{10} } & {a_{20}^{01} } & {a_{20}^{20} } & {a_{20}^{02} } & {a_{20}^{11} } \\ {a_{02}^{00} } & {a_{02}^{10} } & {a_{02}^{01} } & {a_{02}^{20} } & {a_{02}^{02} } & {a_{02}^{11} } \\ {a_{11}^{00} } & {a_{11}^{10} } & {a_{11}^{01} } & {a_{11}^{20} } & {a_{11}^{02} } & {a_{11}^{11} } \\ \end{array} } \right]$$
(55)

and

$${\mathbf{b}} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right].$$
(56)

The determination of PD functions that are orthogonal to each term in the Taylor series expansion is achieved by obtaining the unknown coefficients after performing the operation \({\mathbf{a}} = {\mathbf{A}}^{ - 1} {\mathbf{b}}\), Eq. (48).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorduncu, M., Kutlu, A., Madenci, E. et al. Nonlocal modeling of bi-material and modulus graded plates using peridynamic differential operator. Engineering with Computers 39, 893–909 (2023). https://doi.org/10.1007/s00366-022-01699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01699-2

Keywords