Skip to main content
Log in

An enrichment technique for bending analysis of in-plane heterogeneous thin plates with weak singularities

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Static solution of thin elastic plate problems with in-plane varying thickness or material properties having weak point singularities (e.g. crack tip or notches) is studied using a novel enrichment technique. Since the smooth basis functions are not capable of adapting to the adjacency of the singular edge point, enrichment bases called Equilibrated Singular Basis Functions (EqSBFs) are added to improve the solution quality. A combination of Chebyshev polynomials of the first kind and trigonometric functions are used as basis functions. The equilibrium equation is enforced by a weighted residual approach over a fictitious domain which contains the main problem domain. The total integration process is replaced by a composition of normalized pre-evaluated integrals, thus speeding up the procedure considerably. The novelty of the paper is that the proposed method can automatically identify and reproduce the enriching terms corresponding to the singularity order of the problem, which is an advantage with respect to the similar methods that need a priori knowledge of the analytical singularity order. Although the proposed technique is developed in the context of boundary methods, it may also be useful in other enriched methods such as XFEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zienkiewicz OC, Taylor RL (2000) The finite element method: solid mechanics. Butterworth, Heineman

    MATH  Google Scholar 

  2. Jaberzadeh E, Azhari M, Boroomand B (2013) Inelastic buckling of skew and rhombic thin thickness-tapered plates with and without intermediate supports using the element-free galerkin method. Appl Math Model 37(10–11):6838–6854

    Article  MathSciNet  Google Scholar 

  3. Atluri S, Zhu T (2000) New concepts in meshless methods. Int J Numer Meth Eng 47(1–3):537–556

    Article  MathSciNet  MATH  Google Scholar 

  4. Shang Y, Liu Y-D, Liu S-X (2021) Trefftz-unsymmetric finite element for bending analysis of orthotropic plates. Engineering with Computers, 1–15

  5. Chen J-T, Wu C, Lee Y-T, Chen K (2007) On the equivalence of the trefftz method and method of fundamental solutions for laplace and biharmonic equations. Comput Math Appl 53(6):851–879

    MathSciNet  MATH  Google Scholar 

  6. Hu H-Y, Li Z-C, Cheng AH-D (2005) Radial basis collocation methods for elliptic boundary value problems. Comput Math Appl 50(1–2):289–320

    MathSciNet  MATH  Google Scholar 

  7. Boroomand B, Soghrati S, Movahedian B (2010) Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style. Int J Numer Meth Eng 81(8):971–1018

    Article  MathSciNet  MATH  Google Scholar 

  8. Pirzadeh A, Boroomand B (2020) On dynamic behavior of composite plates using a higher-order zig–zag theory and exponential basis functions. Arch Appl Mech 90(4):651–672

    Article  Google Scholar 

  9. Zandi S, Boroomand B, Soghrati S (2012) Exponential basis functions in solution of problems with fully incompressible materials: a mesh-free method. J Comput Phys 231(21):7255–7273

    Article  MathSciNet  MATH  Google Scholar 

  10. Noormohammadi N, Boroomand B (2014) A fictitious domain method using equilibrated basis functions for harmonic and bi-harmonic problems in physics. J Comput Phys 272:189–217

    Article  MathSciNet  MATH  Google Scholar 

  11. Boroomand B, Noormohammadi N (2013) Weakly equilibrated basis functions for elasticity problems. Eng Anal Bound Elem 37(12):1712–1727

    Article  MathSciNet  MATH  Google Scholar 

  12. Noormohammadi N, Boroomand B (2021) A boundary method using equilibrated basis functions for bending analysis of in-plane heterogeneous thick plates. Arch Appl Mech 91(1):487–507

    Article  Google Scholar 

  13. Noormohammadi N, Boroomand B (2017) Construction of equilibrated singular basis functions without a priori knowledge of analytical singularity order. Comput Math Appl 73(7):1611–1626

    MathSciNet  MATH  Google Scholar 

  14. Noormohammadi N, Boroomand B (2019) Enrichment functions for weak singularities in 2d elastic problems with isotropic and orthotropic materials. Appl Math Comput 350:402–415

    MathSciNet  MATH  Google Scholar 

  15. Bateniparvar O, Noormohammadi N, Boroomand B (2020) Singular functions for heterogeneous composites with cracks and notches; the use of equilibrated singular basis functions. Comput Math Appl 79(5):1461–1482

    MathSciNet  MATH  Google Scholar 

  16. Fleming M, Chu Y, Moran B, Belytschko T (1997) Enriched element-free galerkin methods for crack tip fields. Int J Numer Meth Eng 40(8):1483–1504

    Article  MathSciNet  Google Scholar 

  17. Bayesteh H, Mohammadi S (2013) Xfem fracture analysis of orthotropic functionally graded materials. Compos B Eng 44(1):8–25

    Article  Google Scholar 

  18. Pathak H (2017) Three-dimensional quasi-static fatigue crack growth analysis in functionally graded materials (fgms) using coupled fe-xefg approach. Theoret Appl Fract Mech 92:59–75

    Article  Google Scholar 

  19. Ching H, Batra R (2001) Determination of crack tip fields in linear elastostatics by the meshless local. CMES-Comput Model Eng Sci 2:273–289

    Google Scholar 

  20. Mossaiby F, Bazrpach M, Shojaei A (2015) Extending the method of exponential basis functions to problems with singularities. Engineering Computations

  21. Kumar B, Somireddy M, Rajagopal A (2019) Adaptive analysis of plates and laminates using natural neighbor galerkin meshless method. Eng Comput 35(1):201–214

    Article  Google Scholar 

  22. Brahtz J (1933) Stress distribution in a reentrant corner

  23. Williams M (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension

  24. Li Z-C, Chu P-C, Young L-J, Lee M-G (2010) Models of corner and crack singularity of linear elastostatics and their numerical solutions. Eng Anal Bound Elem 34(6):533–548

    Article  MathSciNet  MATH  Google Scholar 

  25. Rössle A (2000) Corner singularities and regularity of weak solutions for the two-dimensional lamé equations on domains with angular corners. Journal of elasticity and the physical science of solids 60(1):57–75

    MathSciNet  MATH  Google Scholar 

  26. Scheel J, Wallenta D, Ricoeur A (2022) A critical review on the complex potentials in linear elastic fracture mechanics. J Elast 1–18

  27. Wu Z, Liu Y (2008) Analytical solution for the singular stress distribution due to v-notch in an orthotropic plate material. Eng Fract Mech 75(8):2367–2384

    Article  Google Scholar 

  28. Li Z-C, Lu T-T, Hu H-Y (2004) The collocation trefftz method for biharmonic equations with crack singularities. Eng Anal Bound Elem 28(1):79–96

    Article  MATH  Google Scholar 

  29. Kim S, Palta B, Oh H-S (2020) Extraction formulas of stress intensity factors for the biharmonic equations containing crack singularities. Comput Math Appl 80(5):1142–1163

    MathSciNet  MATH  Google Scholar 

  30. Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in mindlin-reissner plates with the extended finite element method. Int J Solids Struct 37(48–50):7161–7183

    Article  MATH  Google Scholar 

  31. Chen C-D (2018) Singular stress analysis near sharp corners in anisotropic notched plates subjected to bending loads. Appl Math Model 55:183–204

    Article  MathSciNet  MATH  Google Scholar 

  32. Erdogan F, Wu B (1996) Crack problems in fgm layers under thermal stresses. J Therm Stress 19(3):237–265

    Article  Google Scholar 

  33. Huang C-S, Chang M (2007) Corner stress singularities in an fgm thin plate. Int J Solids Struct 44(9):2802–2819

    Article  MATH  Google Scholar 

  34. Boyd J (2000) P: Chebyshev and Fourier spectral analysis. Dover Publications, New York

    Google Scholar 

  35. Meyer C (2000) D: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelpia

    Book  Google Scholar 

  36. Babuška I, Strouboulis T, Mathur A, Upadhyay CS (1994) Pollution-error in the h-version of the finite-element method and the local quality of a-posteriori error estimators. Finite Elem Anal Des 17(4):273–321

    Article  MathSciNet  MATH  Google Scholar 

  37. Wei T, Hon YC, Ling L (2007) Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng Anal Bound Elem 31(4):373–385

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Noormohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A The angular integrals of the coefficient matrix \(\mathbf{A} ^S\)

$$\begin{gathered}\bar{I}_{m,n,q}^1=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{sin} m\bar{\theta } \mathrm{sin}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^2=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{sin}m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^3=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin}\theta \mathrm{sin}m\bar{\theta } \mathrm{sin}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^4=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin} \theta \mathrm{sin}m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^5=\int _0^{2\pi } \mathrm{cos}^2\theta \mathrm{sin}^2\theta \mathrm{sin}m\bar{\theta } \mathrm{sin}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^6=\int _0^{2\pi } \mathrm{cos}^2\theta \mathrm{sin}^2\theta \mathrm{sin}m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^7=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3\theta \mathrm{sin}m\bar{\theta } \mathrm{sin}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^8=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3\theta \mathrm{sin}m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q\bar{\theta }d \bar{\theta }\\ \bar{I}_{m,n,q}^9=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{sin}m\bar{\theta } \mathrm{sin}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{10}=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{sin}m \bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{11}=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{sin}m\bar{\theta }\mathrm{cos}n \bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{12}=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{sin}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{13}=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin}\theta \mathrm{sin}m\bar{\theta } \mathrm{cos}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{14}=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin} \theta \mathrm{sin}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{15}=\int _0^{2\pi } \mathrm{cos}^2\theta \mathrm{sin}^2\theta \mathrm{sin}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{sin}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{16}=\int _0^{2\pi }\mathrm{cos}^2\theta \mathrm{sin}^2\theta \mathrm{sin}m\bar{\theta }\mathrm{cos}n \bar{\theta }\mathrm{cos}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{17}=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3\theta \mathrm{sin}m\bar{\theta } \mathrm{cos}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{18}=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3 \theta \mathrm{sin}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{19}=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{sin}m\bar{\theta }\mathrm{cos}n\bar{\theta } \mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{20}=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{sin} m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{21}=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{cos}m\bar{\theta }\mathrm{sin}n\bar{\theta } \mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{22}=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{cos} m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{23}=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin}\theta \mathrm{cos}m\bar{\theta } \mathrm{sin}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{24}=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin} \theta \mathrm{cos}m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{25}=\int _0^{2\pi } \mathrm{cos}^2\theta \mathrm{sin}^2\theta \mathrm{cos}m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{sin}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{26}=\int _0^{2\pi } \mathrm{cos}^2\theta \mathrm{sin}^2\theta \mathrm{cos}m\bar{\theta }\mathrm{sin}n \bar{\theta }\mathrm{cos}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{27}=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3\theta \mathrm{cos}m\bar{\theta } \mathrm{sin}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{28}=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3 \theta \mathrm{cos}m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{29}=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{cos}m\bar{\theta }\mathrm{sin}n\bar{\theta } \mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{30}=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{cos} m\bar{\theta }\mathrm{sin}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{31}=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{cos}m\bar{\theta }\mathrm{cos}n \bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta } \\ \bar{I}_{m,n,q}^{32}=\int _0^{2\pi } \mathrm{cos}^4\theta \mathrm{cos}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{33}=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin}\theta \mathrm{cos}m\bar{\theta } \mathrm{cos}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{34}=\int _0^{2\pi } \mathrm{cos}^3\theta \mathrm{sin} \theta \mathrm{cos}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{35}=\int _0^{2\pi } \mathrm{cos}^2\theta \mathrm{sin}^2\theta \mathrm{cos}m\bar{\theta }\mathrm{cos}n\bar{\theta } \mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{36}=\int _0^{2\pi } \mathrm{cos}^2 \theta \mathrm{sin}^2\theta \mathrm{cos}m\bar{\theta } \mathrm{cos}n\bar{\theta }\mathrm{cos}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{37}=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3\theta \mathrm{cos}m\bar{\theta } \mathrm{cos}n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{38}=\int _0^{2\pi } \mathrm{cos}\theta \mathrm{sin}^3 \theta \mathrm{cos}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{39}=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{cos}m\bar{\theta }\mathrm{cos} n\bar{\theta }\mathrm{sin}q\bar{\theta }d\bar{\theta }\\ \bar{I}_{m,n,q}^{40}=\int _0^{2\pi } \mathrm{sin}^4\theta \mathrm{cos}m\bar{\theta }\mathrm{cos}n\bar{\theta }\mathrm{cos}q \bar{\theta }d\bar{\theta }\\ \bar{\theta }=\gamma \theta \qquad m,n=0,...,O_t^S \qquad q=0,...,m_{\theta }\end{gathered}$$

Appendix B Matrix entries of \(\mathbf{A} ^S\) in (45)

We defined \(\hat{\mathbf{I }}_k =(\tilde{\mathbf{I }}_k)_{m+1,n+1,all},\qquad k=1,...,20\)

$$\begin{gathered}\mathbf{A} _{2m+1,2n+1}^S\\ \quad =\sum \limits _{p=0}^{m_r}[(\beta ^3/\gamma )((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{3})^T (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{22}) (\mathbf{A} _1)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma ) ((\hat{\mathbf{I }}_{1})^T\tilde{\mathbf{c }}_D^{11} +(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12} +4\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21}) +(\hat{\mathbf{I }}_{5})^T\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{12}+(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta ^2 ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}) +(\hat{\mathbf{I }}_{9})^T\\ \qquad (\tilde{\mathbf{c }}_D^{22}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21}))\}(\mathbf{A} _2)_{all,all,p+1}\\ \qquad +\{\bar{\mathbf{D }}_{\theta 2}\beta \gamma ((\hat{\mathbf{I }}_{1})^T\tilde{\mathbf{c }}_D^{12} +(\hat{\mathbf{I }}_{3})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})-(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{7})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{12})+(\hat{\mathbf{I }}_{9})^T\\ \qquad (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22}))\}(\mathbf{A} _3)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma )((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})\qquad +(\hat{\mathbf{I }}_{5})^T\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{21}+(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad +2m\beta ^2((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}) +(\hat{\mathbf{I }}_{14})^T\\ \qquad (\tilde{\mathbf{c }}_D^{22}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{12}))\}(\mathbf{A} _4)_{all,all,p+1}\\ \qquad +\{(\beta (\beta -1)^2/\gamma )((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta (\beta -1)/\gamma )((\hat{\mathbf{I }}_{1})^T (\tilde{\mathbf{c }}_D^{12}+\tilde{\mathbf{c }}_D^{21}) +(\hat{\mathbf{I }}_{3})^T\\ \qquad (2\tilde{\mathbf{c }}_D^{11} -8\tilde{\mathbf{c }}_D^{33}+2\tilde{\mathbf{c }}_D^{22}) +(\hat{\mathbf{I }}_{5})^T(\tilde{\mathbf{c }}_D^{12} +\tilde{\mathbf{c }}_D^{21}))\\ \qquad +(\beta /\gamma )((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{22}+(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad +2m\beta ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +2m\beta (\beta -1)((\hat{\mathbf{I }}_{12})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{14})^T (\tilde{\mathbf{c }}_D^{22}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{12}))\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{7})^T (\tilde{\mathbf{c }}_D^{22}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta (\beta -1) ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad +4m\bar{\mathbf{D }}_{\theta 1}\beta \gamma ((\hat{\mathbf{I }}_{16})^T\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{33})\}(\mathbf{A} _5)_{all,all,p+1}\\ \qquad +\{-\bar{\mathbf{D }}_{\theta 2}(\beta -1)\gamma ((\hat{\mathbf{I }}_{1})^T\tilde{\mathbf{c }}_D^{12} -(\hat{\mathbf{I }}_{3})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{22}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad -4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{16})^T\tilde{\mathbf{c }}_D^{33} -(\hat{\mathbf{I }}_{18})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}(\beta -1) ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}((\hat{\mathbf{I }}_{7})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\\ \qquad +2m\bar{\mathbf{D }}_{\theta 2}\gamma ^2 ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\} (\mathbf{A} _6)_{all,all,p+1}\\ \qquad +\{-m^2\beta \gamma ((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{3})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{5})^T (\tilde{\mathbf{c }}_D^{12}))\\ \qquad +2m\beta ((\hat{\mathbf{I }}_{12})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\} (\mathbf{A} _7)_{all,all,p+1}\\ \qquad +\{-m^2(\beta -1)\gamma ((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{3})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad -m^2\gamma ((\hat{\mathbf{I }}_{1})^T\tilde{\mathbf{c }}_D^{22}+(\hat{\mathbf{I }}_{3})^T(\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{5})^T(\tilde{\mathbf{c }}_D^{11}))\\ \qquad -4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{16})^T\tilde{\mathbf{c }}_D^{33} -(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}-\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad +2m(\beta -1)((\hat{\mathbf{I }}_{12})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad +2m((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{12}+2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad +2m^2\bar{\mathbf{D }}_{\theta 1}\gamma ^2 ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\} (\mathbf{A} _8)_{all,all,p+1}\\ \qquad +\{4m\bar{\mathbf{D }}_{\theta 1}(\gamma /\beta ) ((\hat{\mathbf{I }}_{16})^T(\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{33}))\\ \qquad +m^2\bar{\mathbf{D }}_{\theta 2}(\gamma ^3/\beta ) ((\hat{\mathbf{I }}_{1})^T\tilde{\mathbf{c }}_D^{22} +(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad +2m^2\bar{\mathbf{D }}_{\theta 1}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad +2m\bar{\mathbf{D }}_{\theta 2}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\} (\mathbf{A} _9)_{all,all,p+1}]\\ \mathbf{A} _{2m+2,2n+1}^S\\ \quad =\sum \limits _{p=0}^{m_r}[(\beta ^3/\gamma ) ((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{11} +(\hat{\mathbf{I }}_{8})^T(\tilde{\mathbf{c }}_D^{12} +4\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{10})^T\tilde{\mathbf{c }}_D^{22}) (\mathbf{A} _1)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma )((\hat{\mathbf{I }}_{6})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{12}+(\hat{\mathbf{I }}_{8})^T(\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{10})^T\tilde{\mathbf{c }}_D^{21})\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta ^2 ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\} (\mathbf{A} _2)_{all,all,p+1}\\ \qquad +\{-\bar{\mathbf{D }}_{\theta 2}\beta \gamma ((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{12} +(\hat{\mathbf{I }}_{8})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})-(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\} (\mathbf{A} _3)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma )((\hat{\mathbf{I }}_{6})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{6})^T \tilde{\mathbf{c }}_D^{21}+(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad +2m\beta ^2((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\} (\mathbf{A} _4)_{all,all,p+1}\\ \qquad +\{(\beta (\beta -1)^2/\gamma )((\hat{\mathbf{I }}_{6})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta (\beta -1)/\gamma )((\hat{\mathbf{I }}_{6})^T (\tilde{\mathbf{c }}_D^{12}+\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{8})^T(2\tilde{\mathbf{c }}_D^{11} -8\tilde{\mathbf{c }}_D^{33}+2\tilde{\mathbf{c }}_D^{22}) +(\hat{\mathbf{I }}_{10})^T (\tilde{\mathbf{c }}_D^{12} +\tilde{\mathbf{c }}_D^{21}))\\ \qquad +(\beta /\gamma )((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{22} +(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21}) +(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad +2m\beta ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +2m\beta (\beta -1)((\hat{\mathbf{I }}_{17})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{2})^T (\tilde{\mathbf{c }}_D^{22}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta (\beta -1) ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad -4m\bar{\mathbf{D }}_{\theta 1}\beta \gamma ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{33})\}(\mathbf{A} _5)_{all,all,p+1}\\ \qquad +\{\bar{\mathbf{D }}_{\theta 2}(\beta -1)\gamma ((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{12} -(\hat{\mathbf{I }}_{8})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{22}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad +4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{33} -(\hat{\mathbf{I }}_{13})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}(\beta -1) ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}((\hat{\mathbf{I }}_{2})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\\ \qquad -2m\bar{\mathbf{D }}_{\theta 2}\gamma ^2 ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\} (\mathbf{A} _6)_{all,all,p+1}\\ \qquad +\{m^2\beta \gamma ((\hat{\mathbf{I }}_{6})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{8})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{10})^T (\tilde{\mathbf{c }}_D^{12}))\\ \qquad +2m\beta ((\hat{\mathbf{I }}_{17})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\} (\mathbf{A} _7)_{all,all,p+1}\\ \qquad +\{m^2(\beta -1)\gamma ((\hat{\mathbf{I }}_{6})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{8})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad +m^2\gamma ((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{22} +(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{10})^T (\tilde{\mathbf{c }}_D^{11}))\\ \qquad +4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{33} -(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}-\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad +2m(\beta -1)((\hat{\mathbf{I }}_{17})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad +2m((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad +2m^2\bar{\mathbf{D }}_{\theta 1}\gamma ^2 ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\} (\mathbf{A} _8)_{all,all,p+1}\\ \qquad -\{4m\bar{\mathbf{D }}_{\theta 1}(\gamma /\beta ) ((\hat{\mathbf{I }}_{11})^T(\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{33}))\\ \qquad +m^2\bar{\mathbf{D }}_{\theta 2}(\gamma ^3/\beta ) ((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{22} +(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad +2m^2\bar{\mathbf{D }}_{\theta 1}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad -2m\bar{\mathbf{D }}_{\theta 2}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\} (\mathbf{A} _9)_{all,all,p+1}]\\ \mathbf{A} _{2m+1,2n+2}^S\nonumber \\ \quad =\sum \limits _{p=0}^{m_r}[(\beta ^3/\gamma ) ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{11} +(\hat{\mathbf{I }}_{13})^T(\tilde{\mathbf{c }}_D^{12} +4\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{15})^T\tilde{\mathbf{c }}_D^{22}) (\mathbf{A} _1)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma )((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{12}+(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta ^2 ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\} (\mathbf{A} _2)_{all,all,p+1}\\ \qquad +\{-\bar{\mathbf{D }}_{\theta 2}\beta \gamma ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{12} +(\hat{\mathbf{I }}_{13})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})-(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\} (\mathbf{A} _3)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma )((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{21}+(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad -2m\beta ^2((\hat{\mathbf{I }}_{2})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\} (\mathbf{A} _4)_{all,all,p+1}\\ \qquad +\{(\beta (\beta -1)^2/\gamma )((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta (\beta -1)/\gamma )((\hat{\mathbf{I }}_{11})^T (\tilde{\mathbf{c }}_D^{12}+\tilde{\mathbf{c }}_D^{21}) +(\hat{\mathbf{I }}_{13})^T\\ \qquad (2\tilde{\mathbf{c }}_D^{11}-8\tilde{\mathbf{c }}_D^{33} +2\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{15})^T (\tilde{\mathbf{c }}_D^{12}+\tilde{\mathbf{c }}_D^{21}))\\ \qquad +(\beta /\gamma )((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{22}+(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad -2m\beta ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad -2m\beta (\beta -1)((\hat{\mathbf{I }}_{2})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{17})^T (\tilde{\mathbf{c }}_D^{22}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}\beta (\beta -1) ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad -4m\bar{\mathbf{D }}_{\theta 1}\beta \gamma ((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{33})\}(\mathbf{A} _5)_{all,all,p+1}\\ \qquad +\{\bar{\mathbf{D }}_{\theta 2}(\beta -1)\gamma ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{12} -(\hat{\mathbf{I }}_{13})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{22}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad +4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{6})^T \tilde{\mathbf{c }}_D^{33}-(\hat{\mathbf{I }}_{8})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}(\beta -1) ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad +2\bar{\mathbf{D }}_{\theta 1}((\hat{\mathbf{I }}_{17})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\\ \qquad +2m\bar{\mathbf{D }}_{\theta 2}\gamma ^2 ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\} (\mathbf{A} _6)_{all,all,p+1}\\ \qquad +\{m^2\beta \gamma ((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{13})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{15})^T (\tilde{\mathbf{c }}_D^{12}))\\ \qquad -2m\beta ((\hat{\mathbf{I }}_{2})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\} (\mathbf{A} _7)_{all,all,p+1}\\ \qquad +\{m^2(\beta -1)\gamma ((\hat{\mathbf{I }}_{11})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{13})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad +m^2\gamma ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{22} +(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{15})^T (\tilde{\mathbf{c }}_D^{11}))\\ \qquad +4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{6})^T\tilde{\mathbf{c }}_D^{33} -(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}-\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad -2m(\beta -1)((\hat{\mathbf{I }}_{2})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad -2m((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad -2m^2\bar{\mathbf{D }}_{\theta 1}\gamma ^2 ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\} (\mathbf{A} _8)_{all,all,p+1}\\ \qquad +\{-4m\bar{\mathbf{D }}_{\theta 1}(\gamma /\beta ) ((\hat{\mathbf{I }}_{6})^T(\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{8})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{10})^T \tilde{\mathbf{c }}_D^{33}))\\ \qquad +m^2\bar{\mathbf{D }}_{\theta 2}(\gamma ^3/\beta ) ((\hat{\mathbf{I }}_{11})^T\tilde{\mathbf{c }}_D^{22} +(\hat{\mathbf{I }}_{13})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{15})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad -2m^2\bar{\mathbf{D }}_{\theta 1}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{17})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{19})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad +2m\bar{\mathbf{D }}_{\theta 2}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{2})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{4})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\} (\mathbf{A} _9)_{all,all,p+1}]\\ \mathbf{A} _{2m+2,2n+2}^S\\ \quad =\sum \limits _{p=0}^{m_r}[(\beta ^3/\gamma ) ((\hat{\mathbf{I }}_{16})^T\tilde{\mathbf{c }}_D^{11} +(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12} +4\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21}) +(\hat{\mathbf{I }}_{20})^T\tilde{\mathbf{c }}_D^{22}) (\mathbf{A} _1)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma )((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{12}+(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta ^2 ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\} (\mathbf{A} _2)_{all,all,p+1}\\ \qquad +\{-\bar{\mathbf{D }}_{\theta 2}\beta \gamma ((\hat{\mathbf{I }}_{16})^T\tilde{\mathbf{c }}_D^{12} +(\hat{\mathbf{I }}_{18})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})-(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{12})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\} (\mathbf{A} _3)_{all,all,p+1}\\ \qquad +\{(\beta ^2(\beta -1)/\gamma )((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta ^2/\gamma )((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{21}+(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad -2m\beta ^2((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\} (\mathbf{A} _4)_{all,all,p+1}\\ \qquad +\{(\beta (\beta -1)^2/\gamma )((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{11}+(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{22})\\ \qquad +(\beta (\beta -1)/\gamma )((\hat{\mathbf{I }}_{16})^T (\tilde{\mathbf{c }}_D^{12}+\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{18})^T(2\tilde{\mathbf{c }}_D^{11} -8\tilde{\mathbf{c }}_D^{33}+2\tilde{\mathbf{c }}_D^{22}) +(\hat{\mathbf{I }}_{20})^T(\tilde{\mathbf{c }}_D^{12} +\tilde{\mathbf{c }}_D^{21}))\\ \qquad +(\beta /\gamma )((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{22}+(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad -2m\beta ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad -2m\beta (\beta -1)((\hat{\mathbf{I }}_{7})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta ((\hat{\mathbf{I }}_{12})^T (\tilde{\mathbf{c }}_D^{22}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}\beta (\beta -1) ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad +4m\bar{\mathbf{D }}_{\theta 1}\beta \gamma ((\hat{\mathbf{I }}_{1})^T\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{33})\}(\mathbf{A} _5)_{all,all,p+1}\\ \qquad +\{-\bar{\mathbf{D }}_{\theta 2}(\beta -1)\gamma ((\hat{\mathbf{I }}_{16})^T\tilde{\mathbf{c }}_D^{12} -(\hat{\mathbf{I }}_{18})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{22}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{11})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{21})\\ \qquad -4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{1})^T\tilde{\mathbf{c }}_D^{33} -(\hat{\mathbf{I }}_{3})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}+\tilde{\mathbf{c }}_D^{21} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}(\beta -1) ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad -2\bar{\mathbf{D }}_{\theta 1}((\hat{\mathbf{I }}_{12})^T (\tilde{\mathbf{c }}_D^{21}+2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\\ \qquad +2m\bar{\mathbf{D }}_{\theta 2}\gamma ^2 ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\} (\mathbf{A} _6)_{all,all,p+1}\\ \qquad +\{m^2\beta \gamma ((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{18})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{20})^T (\tilde{\mathbf{c }}_D^{12}))\\ \qquad -2m\beta ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\} (\mathbf{A} _7)_{all,all,p+1}\\ \qquad +\{m^2(\beta -1)\gamma ((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{21}-(\hat{\mathbf{I }}_{18})^T\\ \qquad (-\tilde{\mathbf{c }}_D^{11}+4\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{12})\\ \qquad +m^2\gamma ((\hat{\mathbf{I }}_{16})^T \tilde{\mathbf{c }}_D^{22}+(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{20})^T (\tilde{\mathbf{c }}_D^{11}))\\ \qquad -4m\bar{\mathbf{D }}_{\theta 1}\gamma ((\hat{\mathbf{I }}_{1})^T \tilde{\mathbf{c }}_D^{33}-(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}-\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{33})\\ \qquad -2m(\beta -1)((\hat{\mathbf{I }}_{7})^T (\tilde{\mathbf{c }}_D^{11}-2\tilde{\mathbf{c }}_D^{33} -\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22}))\\ \qquad -2m((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21}))\\ \qquad +2m^2\bar{\mathbf{D }}_{\theta 1}\gamma ^2 ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{22})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{11} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12}))\} (\mathbf{A} _8)_{all,all,p+1}\\ \qquad +\{4m\bar{\mathbf{D }}_{\theta 1}(\gamma /\beta ) ((\hat{\mathbf{I }}_{1})^T(\tilde{\mathbf{c }}_D^{33} +(\hat{\mathbf{I }}_{3})^T\\ \qquad (\tilde{\mathbf{c }}_D^{11}-\tilde{\mathbf{c }}_D^{12} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21} +\tilde{\mathbf{c }}_D^{22})+(\hat{\mathbf{I }}_{5})^T \tilde{\mathbf{c }}_D^{33}))\\ \qquad +m^2\bar{\mathbf{D }}_{\theta 2}(\gamma ^3/\beta ) ((\hat{\mathbf{I }}_{16})^T\tilde{\mathbf{c }}_D^{22} +(\hat{\mathbf{I }}_{18})^T\\ \qquad (\tilde{\mathbf{c }}_D^{12}+4\tilde{\mathbf{c }}_D^{33} +\tilde{\mathbf{c }}_D^{21})+(\hat{\mathbf{I }}_{20})^T \tilde{\mathbf{c }}_D^{11})\\ \qquad +2m^2\bar{\mathbf{D }}_{\theta 1}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{12})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{21})\\ \qquad +(\hat{\mathbf{I }}_{14})^T(\tilde{\mathbf{c }}_D^{12} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\\ \qquad +2m\bar{\mathbf{D }}_{\theta 2}(\gamma ^2/\beta ) ((\hat{\mathbf{I }}_{7})^T(\tilde{\mathbf{c }}_D^{22} -2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{12})\\ \qquad +(\hat{\mathbf{I }}_{9})^T(\tilde{\mathbf{c }}_D^{21} +2\tilde{\mathbf{c }}_D^{33}-\tilde{\mathbf{c }}_D^{11}))\} (\mathbf{A} _9)_{all,all,p+1} \end{gathered}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bateniparvar, O., Noormohammadi, N. An enrichment technique for bending analysis of in-plane heterogeneous thin plates with weak singularities. Engineering with Computers 39, 3131–3153 (2023). https://doi.org/10.1007/s00366-022-01702-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01702-w

Keywords