Skip to main content
Log in

A novel fully adaptive truly explicit time-marching methodology for the solution of hyperbolic bioheat conduction models

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this work, a truly explicit time-marching methodology is discussed for the time-domain solution for heat propagation considering the dual-phase-lag (DPL) bioheat model. The proposed technique considers self-adjustable time integration parameters, and it is approached together with automated calculations of domain decomposition and subcycling, providing a very versatile fully adaptive solution algorithm. The discussed domain decomposition procedure automatically divides the domain model into different subdomains (according to the properties of the discretized problem), in which different time-step values are applied, enabling more efficient (yet stable) explicit analyses. Expressions for the adaptive time integration parameters of the method and for the critical time steps of the subdomains of the model are presented and discussed. At the end of the paper, benchmark and applied examples are studied, showing the excellent performance of the proposed approach and the great effectiveness of the discussed fully adaptive formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Minkowycz WJ, Sparrow EM, Murthy JY, Abraham JP (2007) Handbook of Numerical Heat Transfer, 2nd edn. Wiley, New Jersey

    Google Scholar 

  2. Liu J, Xu LX (2000) Boundary information based diagnostics on the thermal states of biological bodies. Int J Heat Mass Transf 43(16):2827–39

    Article  MATH  Google Scholar 

  3. Torvi DA, Dale JD (1994) A finite element model of skin subjected to a flash fire. J Biomech Eng 116(3):250–5

    Article  Google Scholar 

  4. Dai W, Yu H, Nassar R (2004) A fourth-order compact finite-difference scheme for solving a 1-D pennes’ bioheat transfer equation in a triple-layered skin structure. Numer Heat Transf, B: Fundam 46(5):447–61

    Article  Google Scholar 

  5. Chan CL (1992) Boundary element method analysis for the bioheat transfer equation. J Biomech Eng 113(4):358–65

    Article  Google Scholar 

  6. Tzou DY. A unified field approach for heat conduction from macro- to microscales. J. Heat Transfer. 1995;117.

  7. Liu J, Chen X, Xu LX (1999) New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans Biomed Eng. 46(4):420–8

    Article  Google Scholar 

  8. Özen Ş, Helhel S, Çerezci O (2008) Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT). Burns 34(1):45–49

    Article  Google Scholar 

  9. Liu KC (2008) Thermal propagation analysis for living tissue with surface heating. Int J Therm Sci. 47(5):507–513

    Article  Google Scholar 

  10. Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51(9–10):2237–2259

    Article  MATH  Google Scholar 

  11. Loureiro FS, Wrobel LC, Mansur WJ (2012) Solution of hyperbolic bioheat transfer problems by numerical Green’s functions: the ExGA-linear θ method. J Braz Soc Mech Sci Eng 34(4):459–468

    Article  Google Scholar 

  12. Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus. 247(4):431

    MATH  Google Scholar 

  13. Vernotte P (1961) Some possible complications in the phenomena of thermal studies. Compete Rendus 252:2190–2191

    Google Scholar 

  14. Tzou DY (2014) Macro- to microscale heat transfer: the lagging behavior, 2nd edn. John wiley & sons, New Jersey

    Book  Google Scholar 

  15. Askarizadeh H, Ahmadikia H (2015) Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Appl Math Model 39(13):3704–20

    Article  MathSciNet  MATH  Google Scholar 

  16. Hobiny AD, Abbas IA (2020) Nonlinear analysis of dual-phase lag bio-heat model in living tissues induced by laser irradiation. J Therm Stress 43(4):503–511

    Article  Google Scholar 

  17. Jasiński M, Majchrzak E, Turchan L (2016) Numerical analysis of the interactions between laser and soft tissues using generalized dual-phase lag equation. Appl Math Model 40(2):750–62

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang Q, Sun Y, Yang J (2021) Thermoelastic behavior of skin tissue induced by laser irradiation based on the generalized dual-phase lag model. J Therm Biol 100:103038

    Article  Google Scholar 

  19. Zhou H, Li P, Zuo W, Fang Y (2020) Dual-phase-lag thermoelastic damping models for micro/nanobeam resonators. Appl Math Model 79:31–51

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu L, Zheng L, Chen Y (2018) Macroscopic and microscopic anomalous diffusion in comb model with fractional dual-phase-lag model. Appl Math Model 62:629–637

    Article  MathSciNet  MATH  Google Scholar 

  21. Shah FA, Awana MI (2020) A computational wavelet method for solving dual-phase-lag model of bioheat transfer during hyperthermia treatment. Comput Math Methods 2(4):e1095

    Article  MathSciNet  Google Scholar 

  22. Kumar M, Rai KN, Rajeev. (2020) A study of fractional order dual-phase-lag bioheat transfer model. J Therm Biol 93:102661

    Article  Google Scholar 

  23. Fahmy MA (2021) A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation. Case Stud Therm Eng. 25:100918

    Article  Google Scholar 

  24. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications INC, New York

    MATH  Google Scholar 

  25. Zienkiewicz O, Taylor R, Zhu JZ (2013) The Finite Element Method: its Basis and Fundamentals, 7th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  26. Soares D (2021) Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Eng Comput 38:3251–3268

    Article  Google Scholar 

  27. Pinto LR, Soares D, Mansur WJ (2021) Elastodynamic wave propagation modelling in geological structures considering fully-adaptive explicit time-marching procedures. Soil Dyn Earthq Eng 150:106962

    Article  Google Scholar 

  28. Gravouil A, Combescure A (2001) Multi-time-step explicit - implicit method for non-linear structural dynamics. Int J Numer Methods Eng 50(1):199–225

    Article  MATH  Google Scholar 

  29. Dujardin G, Lafitte P (2016) Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA J Numer Anal 36(4):1804–1841

    Article  MathSciNet  MATH  Google Scholar 

  30. Soares D, Mansur WJ, Lima DL (2007) An explicit multi-level time-step algorithm to model the propagation of interacting acoustic-elastic waves using finite element/finite difference coupled procedures. CMES Comput Model Eng Sci. 17(1):19

    MathSciNet  MATH  Google Scholar 

  31. Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng. 137(2):1785–188

    Article  MathSciNet  MATH  Google Scholar 

  32. Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193

    Article  Google Scholar 

  33. Soares D (2021) A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Comput Methods Appl Mech Eng 375:1136

    Article  MathSciNet  MATH  Google Scholar 

  34. Soares D (2021) A novel single-step explicit time-marching procedure with improved dissipative, dispersive and stability properties. Comput Methods Appl Mech Eng 386:114077

    Article  MathSciNet  MATH  Google Scholar 

  35. Pennes HH (1998) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85(1):5–34

    Article  Google Scholar 

  36. Nazmdeh H, Vahabi M, Nazari MA (2021) Finite element modeling of Non-Fourier heat transfer in a cancerous tissue with an injected fat layer during hyperthermia treatment. J Therm Biol 100:103073

    Article  Google Scholar 

  37. Figueiredo AAA, Nascimentodo JG, Malheiros FC, Silva Ignacioda LH, Fernandes HC, Guimaraes G (2019) Breast tumor localization using skin surface temperatures from a 2D anatomic model without knowledge of the thermophysical properties. Comput Methods Programs Biomed 172:65–77

    Article  Google Scholar 

  38. Paruch M (2020) Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation. Materials 13(1):136

    Article  Google Scholar 

  39. Soares D, Wrobel LC (2018) Solution of hyperbolic bioheat conduction models based on adaptive time integrators. Finite Elem Anal Des 149:1–14

    Article  MathSciNet  Google Scholar 

  40. PDQ Adult Treatment Editorial Board. (2002) Breast Cancer Treatment During Pregnancy (PDQ®): Patient Version. In: PDQ Cancer Information Summaries. National Cancer Institute, US

  41. Roetzel W, Xuan Y (1998) Transient response of the human limb to an external stimulus. Int J Heat Mass Transf 41(1):221–239

    Article  MATH  Google Scholar 

  42. Feldmann A, Wili P, Maquer G, Zysset P (2018) The thermal conductivity of cortical and cancellous bone. Eur Cells Mater 35:25–33

    Article  Google Scholar 

  43. Karmani S (2006) The thermal properties of bone and the effects of surgical intervention. Curr Orthop. 20(1):52–58

    Article  Google Scholar 

  44. Liu KC, Chen HT (2009) Analysis for the dual-phase-lag bio-heat transfer during magnetic hyperthermia treatment. Int J Heat Mass Transf 52(5–6):1214–1222

    MATH  Google Scholar 

Download references

Acknowledgements

The financial support by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais), PRH-ANP (Programa de Recursos Humanos da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis) and PETROBRAS (CENPES – 21066) is greatly acknowledged.

Funding

CNPq, CAPES, FAPEMIG, PRH-ANP, Petrobras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim Soares Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, L.R., Soares Jr., D. & Mansur, W.J. A novel fully adaptive truly explicit time-marching methodology for the solution of hyperbolic bioheat conduction models. Engineering with Computers 38, 4183–4206 (2022). https://doi.org/10.1007/s00366-022-01739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01739-x

Keywords

Navigation