Skip to main content
Log in

Weak form of bond-associated peridynamic differential operator for solving differential equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the weak form of bond-associated peridynamic differential operator is proposed to solve differential equations. The presented method inherits the advantages of the original peridynamic differential operator and enables directly and efficiently to determine the nonlocal weak form for local differential equations and obtain the corresponding symmetrical tangent stiffness matrix in the smaller size using variational principles. The concept of bond-associated family is introduced to suppress the numerical oscillation and zero-energy modes in this study. Several typical elasticity problems, taken as examples, are presented to show the application and capabilities of this method. The accuracy, convergence, and stability of the proposed method are demonstrated by seven numerical examples including linear and nonlinear, steady and transient state problems, and eigenvalue problems in 1D, 2D, and 3D cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Tadmor E (2012) A review of numerical methods for nonlinear partial differential equations. Bull Amer Math Soc 49(4):507–554

    MathSciNet  MATH  Google Scholar 

  2. Zienkiewicz OC, Taylor RL, Zienkiewicz OC, Taylor RL (1977) The Finite Element Method. McGraw-Hill, London

    MATH  Google Scholar 

  3. Narasimhan TN, Witherspoon PA (1976) An integrated finite difference method for analyzing fluid flow in porous media. Water Resour Res 12(1):57–64

    Google Scholar 

  4. Eymard R, Gallouët T, Herbin R (2000) Finite volume methods Handb Numer Anal 7:713–1018

    Google Scholar 

  5. Brebbia CA (1980) The boundary element method for engineers. Pentech Press, London

    Google Scholar 

  6. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    MathSciNet  MATH  Google Scholar 

  7. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Engrg 139(1–4):375–408

    MathSciNet  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  9. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Google Scholar 

  10. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    MathSciNet  MATH  Google Scholar 

  11. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  MATH  Google Scholar 

  12. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modelling. J Elast 88(2):151–184

    MATH  Google Scholar 

  13. Madenci E, Oterkus E (2014) Peridynamic Theory and Its Applications. Springer, New York

    MATH  Google Scholar 

  14. Huang D, Lu G, Wang C, Qiao P (2015) An extended peridynamic approach for deformation and fracture analysis. Eng Fract Mech 141:196–211

    Google Scholar 

  15. Huang D, Lu G, Qiao P (2015) An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int J Mech Sci 94–95:111–122

    Google Scholar 

  16. Gu X, Zhang Q, Huang D, Yv Y (2016) Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Eng Fract Mech 160:124–137

    Google Scholar 

  17. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Methods Eng 108(12):1451–1476

    MathSciNet  Google Scholar 

  18. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: A stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    MathSciNet  MATH  Google Scholar 

  19. Madenci E, Dorduncu M, Barut A, Phan N (2018) Weak form of peridynamics for nonlocal essential and natural boundary conditions. Comput Methods Appl Mech Eng 337:598–631

    MathSciNet  MATH  Google Scholar 

  20. Madenci E, Dorduncu M, Barut A, Phan N, Gu X (2019) Weak form of bond-associated non-ordinary state-based peridynamics free of zero energy modes with uniform or non-uniform discretization. Eng Fract Mech 218:106613

    Google Scholar 

  21. Wang H, Xu Y, Huang D (2019) A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture. Int J Mech Sci 159:336–344

    Google Scholar 

  22. Zhang Y, Huang D, Cai Z, Xu Y (2020) An extended ordinary state-based peridynamic approach for modelling hydraulic fracturing. Eng Fract Mech 234:107086

    Google Scholar 

  23. Wu L, Huang D, Bobaru F (2021) A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics. Int J Impact Eng 149:103791

    Google Scholar 

  24. Wu L, Huang D (2022) Energy dissipation study in impact: From elastic and elastoplastic analysis in peridynamics. Int J Solids Struct 234:111279

    Google Scholar 

  25. Wu L, Huang D, Ma Q, Li Z, Yao X (2022) Peridynamic modeling for impact failure of wet concrete considering the influence of saturation. Int J Damage Mech 31(9):1448–1474

    Google Scholar 

  26. He D, Huang D, Jiang D (2021) Modeling and studies of fracture in functionally graded materials under thermal shock loading using peridynamics. Theor Appl Fract Mech 111:102852

    Google Scholar 

  27. Yang Z, Oterkus E, Oterkus S (2021) Peridynamic formulation for higher-order plate theory. J Peridyn Nonlocal Model 3(3):185–210

    MathSciNet  MATH  Google Scholar 

  28. Yang Z, Oterkus E, Oterkus S (2021) A novel peridynamic mindlin plate formulation without limitation on material constants. J Peridyn Nonlocal Model 3(3):287–306

    MathSciNet  MATH  Google Scholar 

  29. Ma Q, Wu L, Huang D (2022) An extended peridynamic model for dynamic fracture of laminated glass considering interfacial debonding. Compos Struct 290:115552

    Google Scholar 

  30. Yao X, Huang D (2022) Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and fracturing. Comput Struct 270:106847

    Google Scholar 

  31. Madenci E, Barut A, Futch M (2016) Peridynamic differential operator and its applications. Comput Methods Appl Mech Eng 304:408–451

    MathSciNet  MATH  Google Scholar 

  32. Madenci E, Barut A, Dorduncu M (2019) Peridynamic Differential Operator for Numerical Analysis. Springer, New York

    MATH  Google Scholar 

  33. Madenci E, Dorduncu M, Gu X (2019) Peridynamic least squares minimization. Comput Methods Appl Mech Eng 348:846–874

    MathSciNet  MATH  Google Scholar 

  34. Bergel GL, Li S (2016) The total and updated Lagrangian formulations of state-based peridynamics. Comput Mech 58(2):351–370

    MathSciNet  MATH  Google Scholar 

  35. Yu H, Li S (2021) On approximation theory of nonlocal differential operators. Int J Numer Methods Eng 122(23):6984–7012

    MathSciNet  Google Scholar 

  36. Yan J, Li S, Kan X, Zhang AM, Lai X (2020) Higher-order nonlocal theory of Updated Lagrangian Particle Hydrodynamics (ULPH) and simulations of multiphase flows. Comput Methods Appl Mech Eng 368:113176

    MathSciNet  MATH  Google Scholar 

  37. Ren H, Zhuang X, Rabczuk T (2020) A nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng 358:112621

    MathSciNet  MATH  Google Scholar 

  38. Ren H, Zhuang X, Rabczuk T (2020) A higher order nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng 367:113132

    MathSciNet  MATH  Google Scholar 

  39. Ren H, Zhuang X, Trung NT, Rabczuk T (2021) A nonlocal operator method for finite deformation higher-order gradient elasticity. Comput Methods Appl Mech Eng 384:113963

    MathSciNet  MATH  Google Scholar 

  40. Kan X, Yan J, Li S, Zhang AM (2021) On differences and comparisons of peridynamic differential operators and nonlocal differential operators. Comput Mech 68(6):1349–1367

    MathSciNet  MATH  Google Scholar 

  41. Madenci E, Dorduncu M, Barut A, Futch M (2017) Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator. Numer Methods Partial Differential Equations 33(5):1726–1753

    MathSciNet  MATH  Google Scholar 

  42. Shojaei A, Galvanetto U, Rabczuk T, Jenabi A, Zaccariotto M (2019) A generalized finite difference method based on the Peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput Methods Appl Mech Eng 343:100–126

    MathSciNet  MATH  Google Scholar 

  43. Bekar AC, Madenci E, Haghighat E (2022) On the solution of hyperbolic equations using the peridynamic differential operator. Comput Methods Appl Mech Eng 391:114574

    MathSciNet  MATH  Google Scholar 

  44. Hosseini VR, Zou W (2022) The peridynamic differential operator for solving time-fractional partial differential equations. Nonlinear Dyn 109:1823–1850

    Google Scholar 

  45. Li Z, Huang D, Xu Y, Yan K (2021) Nonlocal steady-state thermoelastic analysis of functionally graded materials by using peridynamic differential operator. Appl Math Model 93:294–313

    MathSciNet  MATH  Google Scholar 

  46. Li Z, Huang D, Yan K, Xu Y (2022) Large deformation analysis of functionally graded beam with variable cross-section by using peridynamic differential operator. Compos Struct 279:114788

    Google Scholar 

  47. Zhou B, Li Z, Xu Y, Huang D (2022) Analysis of nonlinear heat conduction problems with temperature-dependent conductivity using peridynamic differential operator. Int J Appl Mech 14(5):2250047

    Google Scholar 

  48. Chang H, Chen A, Kareem A, Hu L, Ma R (2022) Peridynamic differential operator-based Eulerian particle method for 2D internal flows. Comput Methods Appl Mech Eng 392:114568

    MathSciNet  MATH  Google Scholar 

  49. Haghighat E, Bekar AC, Madenci E, Juanes R (2021) A nonlocal physics-informed deep learning framework using the peridynamic differential operator. Comput Methods Appl Mech Eng 385:114012

    MathSciNet  MATH  Google Scholar 

  50. Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57

    MathSciNet  MATH  Google Scholar 

  51. Gu X, Zhang Q, Madenci E, Xia X (2019) Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. Comput Methods Appl Mech Engrg 357:112592

    MathSciNet  MATH  Google Scholar 

  52. Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250

    MathSciNet  MATH  Google Scholar 

  53. Li P, Hao ZM, Zhen WQ (2018) A stabilized non-ordinary state-based peridynamic model. Comput Methods Appl Mech Eng 339:262–280

    MathSciNet  MATH  Google Scholar 

  54. Tupek MR, Radovitzky R (2014) An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J Mech Phys Solids 65:82–92

    MathSciNet  MATH  Google Scholar 

  55. Breitzman T, Dayal K (2018) Bond-level deformation gradients and energy averaging in peridynamics. J Mech Phys Solids 110:192–204

    MathSciNet  Google Scholar 

  56. Wu CT, Ren B (2015) A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process. Comput Methods Appl Mech Eng 291:197–215

    MathSciNet  MATH  Google Scholar 

  57. Yaghoobi A, Chorzepa MG (2017) Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics. Comput Struct 188:63–79

    Google Scholar 

  58. Gu X, Madenci E, Zhang Q (2018) Revisit of non-ordinary state-based peridynamics. Eng Fract Mech 190:31–52

    Google Scholar 

  59. Luo J, Sundararaghavan V (2018) Stress-point method for stabilizing zero-energy modes in non-ordinary state-based peridynamics. Int J Solids Struct 150:197–207

    Google Scholar 

  60. Chen H (2018) Bond-associated deformation gradients for peridynamic correspondence model. Mech Res Commun 90:34–41

    Google Scholar 

  61. Chen H, Spencer BW (2019) Peridynamic bond-associated correspondence model: Stability and convergence properties. Int J Numer Methods Eng 117(6):713–727

    MathSciNet  Google Scholar 

  62. Chowdhury SR, Roy P, Roy D, Reddy JN (2019) A modified peridynamics correspondence principle: Removal of zero-energy deformation and other implications. Comput Methods Appl Mech Eng 346:530–549

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supports from the National Natural Science Foundation of China [No. 12072104, 51679077] and the Fundamental Research Funds for the Central Universities in China [No. B210203025], and the China Scholarship Council [No. 202006710119].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The bond-associated nonlocal divergence of a vector function u and its discrete form can be expressed through Eq. (6) as

$$\begin{gathered} \left( {\nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\mathbf{g}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}) \cdot \left( {{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ \left( {\nabla \cdot {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{g}}_{{\{ i\} [j](k)}} \cdot \left( {{\mathbf{u}}_{{\{ i\} }} - {\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } . \hfill \\ \end{gathered}$$
(A.1)

The variation of \(\left( {\nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) and its discrete form can be obtained from Eq. (A.1) as

$$\begin{gathered} {\updelta }\left( {\nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\mathbf{g}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}) \cdot \left( {{\updelta }{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\updelta }{\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ {\updelta }\left( {\nabla \cdot {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{g}}_{{\{ i\} [j](k)}} \cdot \left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } . \hfill \\ \end{gathered}$$
(A.2)

The discrete form of \({\updelta }\left( {\nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) can be recast through (A.2) as

$${\updelta }\left( {\nabla \cdot {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{B}}_{{\{ i\} [j](k)}}^{{{\text{div}}}} \left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } = {\mathbf{B}}_{[j](k)}^{{{\text{div}}}} {\updelta }{\mathbf{u}}_{[j](k)} ,$$
(A.3)

where \({\mathbf{B}}_{{\{ i\} [j](k)}}^{{{\text{div}}}} = {\mathbf{g}}_{{\{ i\} [j](k)}}^{{\text{T}}}\). The construction of \({\mathbf{B}}_{[j](k)}^{{{\text{div}}}}\) is the same as Eq. (20).

The bond-associated nonlocal curl of a vector function u and its discrete form can through Eq. (6) be expressed as

$$\begin{gathered} \left( {\nabla \times {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\mathbf{g}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}) \times \left( {{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ \left( {\nabla \times {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{g}}_{{\{ i\} [j](k)}} \times \left( {{\mathbf{u}}_{{\{ i\} }} - {\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } . \hfill \\ \end{gathered}$$
(A.4)

The variation of \(\left( {\nabla \times {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) and its discrete form can be obtained from Eq. (A.4) as

$$\begin{gathered} {\updelta }\left( {\nabla \times {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\mathbf{g}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}) \times \left( {{\updelta }{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\updelta }{\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ {\updelta }\left( {\nabla \times {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{g}}_{{\{ i\} [j](k)}} \times \left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } . \hfill \\ \end{gathered}$$
(A.5)

The discrete form of \({\updelta }\left( {\nabla \times {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) can be recast through Eq. (A.5) as

$${\updelta }\left( {\nabla \times {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{B}}_{{\{ i\} [j](k)}}^{{{\text{curl}}}} \left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } = {\mathbf{B}}_{[j](k)}^{{{\text{curl}}}} {\updelta }{\mathbf{u}}_{[j](k)} ,$$
(A.6)

where the construction of \({\mathbf{B}}_{[j](k)}^{{{\text{curl}}}}\) is the same as Eq. (20) and \({\mathbf{B}}_{{\{ i\} [j](k)}}^{{{\text{curl}}}}\) is given by

$${\mathbf{B}}_{{\{ i\} [j](k)}}^{{{\text{curl}}}} = \left[ {\begin{array}{*{20}c} 0 & { - g_{{\{ i\} [j](k)}}^{001} } & {g_{{\{ i\} [j](k)}}^{010} } \\ {g_{{\{ i\} [j](k)}}^{001} } & 0 & { - g_{{\{ i\} [j](k)}}^{100} } \\ { - g_{{\{ i\} [j](k)}}^{010} } & {g_{{\{ i\} [j](k)}}^{100} } & 0 \\ \end{array} } \right].$$
(A.7)

The bond-associated nonlocal gradient of divergence for a vector function u and its discrete form can be expressed through Eq. (6) as

$$\begin{gathered} \left( {\nabla \otimes \nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\hat{\mathbf{g}}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}) \cdot \left( {{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ \left( {\nabla \otimes \nabla \cdot {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\hat{\mathbf{g}}}_{{\{ i\} [j](k)}} \otimes \left( {{\mathbf{u}}_{{\{ i\} }} - {\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } , \hfill \\ \end{gathered}$$
(A.8)

where

$${\hat{\mathbf{g}}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}) = \left[ {\begin{array}{*{20}c} {g_{{{{\varvec{\upxi}}}N}}^{200} ({\overline{\mathbf{\xi }}})} & {g_{{{{\varvec{\upxi}}}N}}^{110} ({\overline{\mathbf{\xi }}})} & {g_{{{{\varvec{\upxi}}}N}}^{101} ({\overline{\mathbf{\xi }}})} \\ {g_{{{{\varvec{\upxi}}}N}}^{110} ({\overline{\mathbf{\xi }}})} & {g_{{{{\varvec{\upxi}}}N}}^{020} ({\overline{\mathbf{\xi }}})} & {g_{{{{\varvec{\upxi}}}N}}^{011} ({\overline{\mathbf{\xi }}})} \\ {g_{{{{\varvec{\upxi}}}N}}^{101} ({\overline{\mathbf{\xi }}})} & {g_{{{{\varvec{\upxi}}}N}}^{011} ({\overline{\mathbf{\xi }}})} & {g_{{{{\varvec{\upxi}}}N}}^{002} ({\overline{\mathbf{\xi }}})} \\ \end{array} } \right],\;{\hat{\mathbf{g}}}_{{\{ i\} [j](k)}} = \left[ {\begin{array}{*{20}c} {g_{{\{ i\} [j](k)}}^{200} } & {g_{{\{ i\} [j](k)}}^{110} } & {g_{{\{ i\} [j](k)}}^{101} } \\ {g_{{\{ i\} [j](k)}}^{110} } & {g_{{\{ i\} [j](k)}}^{020} } & {g_{{\{ i\} [j](k)}}^{011} } \\ {g_{{\{ i\} [j](k)}}^{101} } & {g_{{\{ i\} [j](k)}}^{011} } & {g_{{\{ i\} [j](k)}}^{002} } \\ \end{array} } \right].$$
(A.9)

The variation of \(\left( {\nabla \otimes \nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) and its discrete form can be obtained from Eq. (A.9) as

$$\begin{gathered} {\updelta }\left( {\nabla \otimes \nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\hat{\mathbf{g}}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}) \cdot \left( {{\updelta }{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\updelta }{\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ {\updelta }\left( {\nabla \otimes \nabla \cdot {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\hat{\mathbf{g}}}_{{\{ i\} [j](k)}} \cdot \left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } . \hfill \\ \end{gathered}$$
(A.10)

The discrete form of \({\updelta }\left( {\nabla \otimes \nabla \cdot {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) can be recast through Eq. (A.10) as

$${\updelta }\left( {\nabla \otimes \nabla \cdot {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{B}}_{{\{ i\} [j](k)}}^{{\text{grad - div}}} \left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)} V_{{\{ i\} }} = {\mathbf{B}}_{[j](k)}^{{\text{grad - div}}} {\updelta }{\mathbf{u}}_{[j](k)} ,$$
(A.11)

where \({\mathbf{B}}_{{\{ i\} [j](k)}}^{{\text{grad - div}}} = {\hat{\mathbf{g}}}_{{\{ i\} [j](k)}}^{{\text{T}}}\). The construction of \({\mathbf{B}}_{[j](k)}^{{\text{grad - div}}}\) is the same as Eq. (20).

The bond-associated nonlocal Laplacian for a vector function u and its discrete form can be expressed through Eq. (6) as

$$\begin{gathered} \left( {\nabla^{2} {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\text{tr}}({\hat{\mathbf{g}}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}))\left( {{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ \left( {\nabla^{2} {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\text{tr}}({\hat{\mathbf{g}}}_{{\{ i\} [j](k)}} )\left( {{\mathbf{u}}_{{\{ i\} }} - {\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } . \hfill \\ \end{gathered}$$
(A.12)

The variation of \(\left( {\nabla^{2} {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) and its discrete form can be obtained from Eq. (A.12) as

$$\begin{gathered} {\updelta }\left( {\nabla^{2} {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}} = \int_{{H_{{{\varvec{\upxi}}}} }} {{\text{tr}}({\hat{\mathbf{g}}}_{{{\varvec{\upxi}}}} ({\overline{\mathbf{\xi }}}))\left( {{\updelta }{\mathbf{u}}_{{{\mathbf{x^{\prime\prime}}}}} - {\updelta }{\mathbf{u}}_{{\mathbf{x}}} } \right)dV_{{{\mathbf{x^{\prime\prime}}}}} } \hfill \\ {\updelta }\left( {\nabla^{2} {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\text{tr}}({\hat{\mathbf{g}}}_{{\{ i\} [j](k)}} )\left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)V_{{\{ i\} }} } . \hfill \\ \end{gathered}$$
(A.13)

The discrete form of \({\updelta }\left( {\nabla^{2} {\mathbf{u}}} \right)_{{{\varvec{\upxi}}}}\) can be recast through Eq. (A.13) as

$${\updelta }\left( {\nabla^{2} {\mathbf{u}}} \right)_{[j](k)} = \sum\limits_{i = 1}^{{N_{[j](k)} }} {{\mathbf{B}}_{{\{ i\} [j](k)}}^{{{\text{Lapl}}}} \left( {{\updelta }{\mathbf{u}}_{{\{ i\} }} - {\updelta }{\mathbf{u}}_{(k)} } \right)} V_{{\{ i\} }} = {\mathbf{B}}_{[j](k)}^{{{\text{Lapl}}}} {\updelta }{\mathbf{u}}_{[j](k)} ,$$
(A.14)

where \({\mathbf{B}}_{{\{ i\} [j](k)}}^{{{\text{Lapl}}}} = {\text{tr}}({\hat{\mathbf{g}}}_{{\{ i\} [j](k)}} ){\mathbf{I}}\). The construction of \({\mathbf{B}}_{[j](k)}^{{{\text{Lapl}}}}\) is the same as Eq. (20).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Huang, D., Ren, H. et al. Weak form of bond-associated peridynamic differential operator for solving differential equations. Engineering with Computers 39, 3491–3507 (2023). https://doi.org/10.1007/s00366-022-01763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01763-x

Keywords

Navigation