Skip to main content
Log in

Optimal sensor placement for digital twin based on mutual information and correlation with multi-fidelity data

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper proposes an optimal sensor placement algorithm based on mutual information and correlation, which is particularly suitable for solving sensor placement problems in digital twins. Digital twins roughly comprise two data types: (1) the sensor data collected from a physical entity and (2) the simulation data collected from the physics-based simulation models. The proposed method takes advantage of the two data types to select sensor locations. Specifically, it determines sensor locations by maximizing the mutual information between the selected and uninstrumented candidate locations. In addition, the correlation between the sensor data and simulation data is characterized by a covariance matrix and used in the determination of mutual information. Moreover, the proposed method is also applicable in multiworking conditions by using clustering algorithms. To verify the effectiveness and applicability of the proposed sensor placement method, it was compared with two other sensor placement methods in terms of reconstruction accuracy through a digital twin case of a crane boom. The results show that the proposed method exhibits excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the authors.

References

  1. Cimino C, Negri E, Fumagalli L (2019) Review of digital twin applications in manufacturing. Comput Ind 113:103130. https://doi.org/10.1016/j.compind.2019.103130

    Article  Google Scholar 

  2. Wang S, Lai X, He X et al (2021) Building a trustworthy product-level shape-performance integrated digital twin with multi-fidelity surrogate model. J Mech Des 144:1–28. https://doi.org/10.1115/1.4052390

    Article  Google Scholar 

  3. Rasheed A, San O, Kvamsdal T (2020) Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access 8:21980–22012. https://doi.org/10.1109/ACCESS.2020.2970143

    Article  Google Scholar 

  4. Tao F, Zhang H, Liu A, Nee AYC (2019) Digital twin in industry: State-of-the-Art. IEEE Trans Ind Inform 15:2405–2415. https://doi.org/10.1109/TII.2018.2873186

    Article  Google Scholar 

  5. Kapteyn MG, Pretorius JVR, Willcox KE (2021) A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat Comput Sci 1:337–347. https://doi.org/10.1038/s43588-021-00069-0

    Article  Google Scholar 

  6. Li C, MahaDeVan S, Ling Y et al (2017) Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA J 55:930–941. https://doi.org/10.2514/1.J055201

    Article  Google Scholar 

  7. Sisson W, Karve P, Mahadevan S (2022) Digital twin approach for component health-informed rotorcraft flight parameter optimization. AIAA J 60:1923–1936. https://doi.org/10.2514/1.J060770

    Article  Google Scholar 

  8. Glaessgen EH, Stargel DS (2012) The digital twin paradigm for future NASA and U.S Air force vehicles. Collect Tech Pap AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf. https://doi.org/10.2514/6.2012-1818

    Article  Google Scholar 

  9. Yang C, Liang K, Zhang X, Geng X (2019) Sensor placement algorithm for structural health monitoring with redundancy elimination model based on sub-clustering strategy. Mech Syst Signal Process 124:369–387. https://doi.org/10.1016/j.ymssp.2019.01.057

    Article  Google Scholar 

  10. Gomes GF, Simões S et al (2018) Sensor placement optimization applied to laminated composite plates under vibration. Struct Multidiscip Optim 58:2099–2118. https://doi.org/10.1007/s00158-018-2024-1

    Article  MathSciNet  Google Scholar 

  11. Koyama S, Chardon G, Daudet L (2020) Optimizing source and sensor placement for sound field control: an overview. IEEE/ACM Trans Audio Speech Lang Process 28:696–714. https://doi.org/10.1109/TASLP.2020.2964958

    Article  Google Scholar 

  12. Ariga K, Nishida T, Koyama S et al (2020) Mutual-information-based sensor placement for spatial sound field recording. ICASSP IEEE Int Conf Acoust Speech Signal Process Proc. https://doi.org/10.1109/ICASSP40776.2020.9053715

    Article  Google Scholar 

  13. Lin X, Chowdhury A, Wang X, Terejanu G (2019) Approximate computational approaches for Bayesian sensor placement in high dimensions. Inf Fusion 46:193–205. https://doi.org/10.1016/j.inffus.2018.06.006

    Article  Google Scholar 

  14. Dur TH (2019) Parallel gaussian processes for optimal sensor placement. thesis

  15. Wang Y, He SH, Wang B (2021) Evolutionary sensor placement for spatiotemporal modeling of battery thermal process. IEEE Trans Ind Inform 3203:1–10. https://doi.org/10.1109/TII.2021.3084133

    Article  Google Scholar 

  16. Yeon LS, Bok LI, Hyeon YU et al (2019) Optimal sensor placement for monitoring and controlling greenhouse internal environments. Biosyst Eng 188:190–206. https://doi.org/10.1016/j.biosystemseng.2019.10.005

    Article  Google Scholar 

  17. Khorshidi MS, Nikoo MR, Taravatrooy N et al (2020) Pressure sensor placement in water distribution networks for leak detection using a hybrid information-entropy approach. Inf Sci (Ny) 516:56–71. https://doi.org/10.1016/j.ins.2019.12.043

    Article  Google Scholar 

  18. Irofti P, Stoican F (2017) Dictionary learning strategies for sensor placement and leakage isolation in water networks. IFAC-PapersOnLine 50:1553–1558. https://doi.org/10.1016/j.ifacol.2017.08.308

    Article  Google Scholar 

  19. Kammer DC (1991) Sensor placement for on-orbit modal identification and correlation of large space structures. J Guid Control Dyn 14:251–259. https://doi.org/10.2514/3.20635

    Article  Google Scholar 

  20. Gomes GF, de Almeida FA, da Silva P, Alexandrino L et al (2019) A multiobjective sensor placement optimization for SHM systems considering Fisher information matrix and mode shape interpolation. Eng Comput 35:519–535. https://doi.org/10.1007/s00366-018-0613-7

    Article  Google Scholar 

  21. Zhu L, Dai J, Bai G (2015) Sensor placement optimization of vibration test on medium-speed mill. Shock Vib 2015:1–9. https://doi.org/10.1155/2015/690196

    Article  Google Scholar 

  22. Mahjoubi S, Barhemat R, Bao Y (2020) Optimal placement of triaxial accelerometers using hypotrochoid spiral optimization algorithm for automated monitoring of high-rise buildings. Autom Constr 118:103273. https://doi.org/10.1016/j.autcon.2020.103273

    Article  Google Scholar 

  23. Rao ARM, Anandakumar G (2007) Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique. Smart Mater Struct 16:2658–2672. https://doi.org/10.1088/0964-1726/16/6/071

    Article  Google Scholar 

  24. Peddada SRT, Tannous PJ, Alleyne AG, Allison JT (2020) Optimal sensor placement methods in active high power density electronic systems with experimental validation. J Mech Des Trans ASME 142:1–13. https://doi.org/10.1115/1.4044744

    Article  Google Scholar 

  25. Joshi S, Boyd S (2009) Sensor selection via convex optimization. IEEE Trans Signal Process 57:451–462. https://doi.org/10.1109/TSP.2008.2007095

    Article  MathSciNet  Google Scholar 

  26. Semaan R (2017) Optimal sensor placement using machine learning. Comput Fluids 159:167–176. https://doi.org/10.1016/j.compfluid.2017.10.002

    Article  MathSciNet  Google Scholar 

  27. Li B, Zhao YP, Wu H, Tan HJ (2021) Optimal sensor placement using data-driven sparse learning method with application to pattern classification of hypersonic inlet. Mech Syst Signal Process 147:107110. https://doi.org/10.1016/j.ymssp.2020.107110

    Article  Google Scholar 

  28. Yoganathan D, Kondepudi S, Kalluri B, Manthapuri S (2018) Optimal sensor placement strategy for office buildings using clustering algorithms. Energy Build 158:1206–1225. https://doi.org/10.1016/j.enbuild.2017.10.074

    Article  Google Scholar 

  29. Krause A, Singh A, Guestrin C (2008) Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J Mach Learn Res 9:235–284. https://doi.org/10.1145/1390681.1390689

    Article  Google Scholar 

  30. Lai X, He X, Wang S et al (2022) Building a lightweight digital twin of a crane boom for structural safety monitoring based on a multifidelity surrogate model. J Mech Des 144:064502. https://doi.org/10.1115/1.4053606

    Article  Google Scholar 

  31. Giselle Fernández-Godino M, Park C, Kim NH, Haftka RT (2019) Issues in deciding whether to use multifidelity surrogates. AIAA J 57:2039–2054. https://doi.org/10.2514/1.j057750

    Article  Google Scholar 

  32. Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55:1029–1050. https://doi.org/10.1007/s00158-016-1550-y

    Article  MathSciNet  Google Scholar 

  33. Song X, Wang S, Zhao Y et al (2023) DADOS : a cloud - based data - driven design optimization system. Chin J Mech Eng 36:1–17. https://doi.org/10.1186/s10033-023-00857-x

    Article  Google Scholar 

  34. Forrester AIJ, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A Math Phys Eng Sci 463:3251–3269. https://doi.org/10.1098/rspa.2007.1900

    Article  MathSciNet  Google Scholar 

  35. Wang S, Liu Y, Zhou Q et al (2021) A multi-fidelity surrogate model based on moving least squares: fusing different fidelity data for engineering design. Struct Multidiscip Optim 64:1–16. https://doi.org/10.1007/s00158-021-03044-5

    Article  MathSciNet  Google Scholar 

  36. Zhang Y, Kim NH, Park C, Haftka RT (2018) Multifidelity surrogate based on single linear regression. AIAA J 56:4944–4952. https://doi.org/10.2514/1.J057299

    Article  Google Scholar 

  37. Song X, Lv L, Sun W, Zhang J (2019) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim 60:965–981. https://doi.org/10.1007/s00158-019-02248-0

    Article  Google Scholar 

  38. Li K, Liu Y, Wang S, Song X (2021) Multifidelity data fusion based on gradient-enhanced surrogate modeling method. J Mech Des 10(1115/1):4051193

    Google Scholar 

  39. Chetan M, Yao S, Griffith DT (2021) Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade. Wind Energy 24:1368–1387. https://doi.org/10.1002/we.2636

    Article  Google Scholar 

  40. Song X, Li K, Wang S et al (2022) Framework design of a digital twin of an Xy compliant parallel manipulator based on non-negative matrix factorization. Proc ASME Des Eng Tech Conf 2:1–6. https://doi.org/10.1115/DETC2022-89187

    Article  Google Scholar 

  41. Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45:50–79. https://doi.org/10.1016/j.paerosci.2008.11.001

    Article  Google Scholar 

  42. Caselton WF, Zidek JV (1984) Optimal monitoring network designs. Stat Probab Lett 2:223–227. https://doi.org/10.1016/0167-7152(84)90020-8

    Article  Google Scholar 

  43. Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling: a practical guide. Wiley

    Book  Google Scholar 

  44. Rasmussen CE (2006) Gaussian processes for machine learning. The MIT Press

    Google Scholar 

  45. Sheykhi H, Bagherpour R, Ghasemi E, Kalhori H (2018) Forecasting ground vibration due to rock blasting: a hybrid intelligent approach using support vector regression and fuzzy C-means clustering. Eng Comput 34:357–365. https://doi.org/10.1007/s00366-017-0546-6

    Article  Google Scholar 

  46. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203. https://doi.org/10.1109/igarss.1988.569600

    Article  Google Scholar 

  47. Fang H, Horstemeyer MF (2006) Global response approximation with radial basis functions. Eng Optim 38:407–424. https://doi.org/10.1080/03052150500422294

    Article  MathSciNet  Google Scholar 

  48. Majdisova Z, Skala V (2017) Radial basis function approximations: comparison and applications. Appl Math Model 51:728–743. https://doi.org/10.1016/j.apm.2017.07.033

    Article  MathSciNet  Google Scholar 

  49. Amzallag C, Gerey JP, Robert JL, Bahuaud J (1994) Standardization of the rainflow counting method for fatigue analysis. Int J Fatigue 16:287–293. https://doi.org/10.1016/0142-1123(94)90343-3

    Article  Google Scholar 

  50. Yang C, Liang K, Zhang X (2020) Strategy for sensor number determination and placement optimization with incomplete information based on interval possibility model and clustering avoidance distribution index. Comput Methods Appl Mech Eng 366:113042. https://doi.org/10.1016/j.cma.2020.113042

    Article  MathSciNet  Google Scholar 

  51. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492. https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Key Research and Development Program of China (Grant No. 2018YFB1700704) and the National Natural Science Foundation of China (Grant No. 52075068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguan Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Deduction of Eq. (7)

The detailed deduction, \(I\left(X;Y\right)=H\left(X\right)-H(X|Y)\):

$$I\left(X;Y\right)=\iint p\left(x,y\right)\mathrm{log}\frac{p\left(x,y\right)}{p\left(y\right)p\left(x\right)}dxdy$$
$$=\iint p(y)p(x|y)\mathrm{log}p\left(x|y\right)dxdy-\iint p(x,y)\mathrm{log}p(x)dxdy$$
$$=\int p(y)\left[\int p(x|y)\mathrm{log}p\left(x|y\right)dx\right]dy-\int \mathrm{log}p(x)\left[\int p(x,y)dy\right]dx$$
(64)
$$=-\int p\left(y\right)H\left(X|Y=y\right)dy-\int p(x)\mathrm{log}p(x)dx$$
$$=-H\left(X|Y\right)+H(X)$$
$$=H\left(X\right)-H(X|Y)$$

Appendix 2: Entropy of the Gaussian

Let \(X\) be a random variable that is normally distributed with mean \(\mu \) and standard deviation \(\sigma \):

$$X\sim \mathcal{N}\left(\mu ,{\sigma }^{2}\right).$$
(65)

Then, its entropy is

$$H\left(X\right)=-\int p\left(x\right)\mathrm{log}p\left(x\right)dx =-{\mathbb{E}}\left[\mathrm{log}p\left(x\right)\right]$$
$$=-{\mathbb{E}}\left[\mathrm{log}\mathcal{N}(\mu ,{\sigma }^{2})\right]$$
$$=-{\mathbb{E}}\left[\mathrm{log}\left[{(2\pi {\sigma }^{2})}^{-1/2}\mathrm{exp}\left(-\frac{1}{2{\sigma }^{2}}{(x-\mu )}^{2}\right)\right]\right]$$
(66)
$$=-{\mathbb{E}}\left[\mathrm{log}\left[{(2\pi {\sigma }^{2})}^{-1/2}\right]-\frac{1}{2{\sigma }^{2}}{(x-\mu )}^{2}\right]$$
$$=\frac{1}{2}log \left(2\pi {\sigma }^{2}\right)+\frac{1}{2{\sigma }^{2}}{\mathbb{E}}\left[{(x-\mu )}^{2}\right]$$
$$=\frac{1}{2}\mathrm{log}(2\pi {\sigma }^{2})+ \frac{1}{2}.$$

From Eq. (66), it can be seen that entropy is a function of the variance \({\sigma }^{2}\). This also supports the statement that entropy is a measure of uncertainty.

Appendix 3: Block matrix inversion

The block matrix inversion works as follows. For a nonsingular matrix

$$\mathbf{A}= \left[\begin{array}{cc}{\mathbf{P}}_{1}& {\mathbf{R}}_{1}\\ {\mathbf{R}}_{1}^{\mathrm{T}}& {\mathbf{Q}}_{1}\end{array}\right]$$
(67)

\({\mathbf{A}}^{-1}\) can be expressed as.

$$\left[\begin{array}{cc}{\mathbf{P}}_{1}^{-1}+{\mathbf{P}}_{1}^{-1}{\mathbf{R}}_{1}{({\mathbf{Q}}_{1}-{\mathbf{R}}_{1}^{\mathrm{T}}{\mathbf{P}}_{1}^{-1}{\mathbf{R}}_{1})}^{-1}{\mathbf{R}}_{1}^{\mathrm{T}}{\mathbf{P}}_{1}^{-1}& -{\mathbf{P}}_{1}^{-1}{\mathbf{R}}_{1}{({\mathbf{Q}}_{1}-{\mathbf{R}}_{1}^{\mathrm{T}}{\mathbf{P}}_{1}^{-1}{\mathbf{R}}_{1})}^{-1}\\ -{({\mathbf{Q}}_{1}-{\mathbf{R}}_{1}^{\mathrm{T}}{\mathbf{P}}_{1}^{-1}{\mathbf{R}}_{1})}^{-1}{\mathbf{R}}_{1}^{\mathrm{T}}{\mathbf{P}}_{1}^{-1}& {({\mathbf{Q}}_{1}-{\mathbf{R}}_{1}^{\mathrm{T}}{\mathbf{P}}_{1}^{-1}{\mathbf{R}}_{1})}^{-1}\end{array}\right]$$
(68)

where, \({\mathbf{P}}_{1}\), \({\mathbf{R}}_{1}\), and \({\mathbf{Q}}_{1}\) are submatrices.

Appendix 4: Proof of Eq. (57)

Proposition: If symmetric matrix A is permutated using the same elementary row and column transformations to obtain matrix B, then the same sequence of elementary transformations can be used on \({\mathbf{A}}^{-1}\) to obtain \({\mathbf{B}}^{-1}\).

Proof: Performing the same elementary row and column transformations to matrix \(\mathbf{A}\) means that matrix \(\mathbf{A}\) right and left multiply by the same matrix \(\mathbf{P}\). Let \(\mathbf{B}=\mathbf{P}\mathbf{A}\mathbf{P}\), where \(\mathbf{A}\) and B are two symmetric matrices, \(\mathbf{P}\) is an elementary matrix. Then, \({\mathbf{B}}^{-1}={(\mathbf{P}\mathbf{A}\mathbf{P})}^{-1}={\mathbf{P}}^{-1}{\mathbf{A}}^{-1}{\mathbf{P}}^{-1}=\mathbf{P}{\mathbf{A}}^{-1}\mathbf{P}\).

\(\mathbf{B}=\mathbf{P}\mathbf{A}\mathbf{P}\) denotes that matrix \(\mathbf{B}\) is obtained by applying an elementary row and an elementary column transformation to \(\mathbf{A}\). For instance, matrix \(\mathbf{B}\) can be obtained by exchanging the \(i\) th and \(j\) th rows of \(\mathbf{A}\) and then exchanging the \(i\) th and \(j\) th columns of \(\mathbf{A}\). Next, \({\mathbf{B}}^{-1}=\) \(\mathbf{P}{\mathbf{A}}^{-1}\mathbf{P}\) denotes that matrix \({\mathbf{B}}^{-1}\) can be obtained by applying the same elementary row and column transformations to \({\mathbf{A}}^{-1}\). That is, matrix \({\mathbf{B}}^{-1}\) can also be obtained by exchanging the \(i\) th and \(j\) th rows of \({\mathbf{A}}^{-1}\) and then exchanging the \(i\) th and \(j\) th columns of \({\mathbf{A}}^{-1}\).

In Sect. 3.2, matrix \({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{(\eta )}\) is obtained from \({\mathbf{C}}_{\mathcal{U},\mathcal{U}}\) by exchanging the \(\eta \) th row and \(\left|\mathcal{U}\right|\) th row of matrix \({\mathbf{C}}_{\mathcal{U},\mathcal{U}}\) and then exchanging the \(\eta \) th and \(\left|\mathcal{U}\right|\) th columns of \({\mathbf{C}}_{\mathcal{U},\mathcal{U}}\). Hence, matrix \({\left({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{(\eta )}\right)}^{-1}\) can also be obtained from \(\left({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{-1}\right)\) by the same manipulations applied to \({\mathbf{C}}_{\mathcal{U},\mathcal{U}}\). Therefore, the \((\left|\mathcal{U}\right|,\left|\mathcal{U}\right|)th\) element of the matrix \({\left({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{(\eta )}\right)}^{-1}\) equals to the \((\eta ,\eta )th\) element of \({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{-1}\), i.e., \({\left({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{(\eta )}\right)}_{\left|\mathcal{U}\right|,\left|\mathcal{U}\right|}^{-1}= {\left( {\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{-1}\right)}_{\eta ,\eta }\), where \({\left(\bullet \right)}_{\left|\mathcal{U}\right|,\left|\mathcal{U}\right|}\) denotes the \((\left|\mathcal{U}\right|,\left|\mathcal{U}\right|)th\) element of the matrix \({\left({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{(\eta )}\right)}^{-1}\) and \({\left({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{-1}\right)}_{\eta ,\eta }\) denotes the \((\eta ,\eta )\) th element of \({\mathbf{C}}_{\mathcal{U},\mathcal{U}}^{-1}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Lai, X., He, X. et al. Optimal sensor placement for digital twin based on mutual information and correlation with multi-fidelity data. Engineering with Computers 40, 1289–1308 (2024). https://doi.org/10.1007/s00366-023-01858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-023-01858-z

Keywords

Navigation