Skip to main content
Log in

A physics-informed parametrization and its impact on 2D IGABEM analysis

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this work, we study the effect of the geometry representation in the context of the IsoGeometric-Analysis-based Boundary Element Method (IGABEM) and we propose an algorithm for the construction of a physics-informed geometric representation which leads to approximation results of high accuracy that are comparable to known adaptive refinement schemes. As a model problem, we use a previously studied 2D potential flow problem around a cylinder; see Politis et al. (Proceedings of SIAM/ACM joint conference on geometric and physical modeling, California, pp 349–354, 2009. https://doi.org/10.1145/1629255.1629302L). This study involves a systematic examination of a series of transformations and reparametrizations and their effect on the achieved accuracy and convergence rate of the numerical solution to the problem at hand. Subsequently, a new parametrization is proposed based on a coarse-level approximation of the field-quantity solution, coupling in this way the geometry representation to the physics of the problem. Finally, the performance of our approach is compared against an exact-solution-driven adaptive refinement scheme and a posteriori error estimates for adaptive IGABEM methods. The proposed methodology delivers results of similar quality to the adaptive approaches, but without the computational cost of error estimates evaluation at each refinement step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

Notes

  1. Note that by flipping the direction of \(\textbf{n}\) we may substitute the two minus signs with pluses.

  2. \(m=2\) may be also included, assuming control points at infinity are allowed.

  3. Note that using higher-order representations of the circle would allow it.

  4. Note that if the coarse approximation of the unknown field quantity is not adequate, a few steps of a uniform refinement process may be applied before following the procedure described above.

  5. insert knots.

References

  1. Politis CG, Ginnis AI, Kaklis PD, Belibassakis KA, Feuer C (2009) An Isogeometric BEM for exterior potential-flow problems in the plane. In: Proceedings of SIAM/ACM Joint Conference on Geometric and Physical Modeling, California, USA, pp 349–354. https://doi.org/10.1145/1629255.1629302L

  2. Hughes T, Cottrell J, Bazilevs Y (2005) Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  Google Scholar 

  3. Simpson RN, Bordas SPA, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209–212:87–100

    Article  MathSciNet  Google Scholar 

  4. Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured t-splines. Comput Methods Appl Mech Eng 254:197–221. https://doi.org/10.1016/j.cma.2012.11.001

    Article  MathSciNet  Google Scholar 

  5. Belibassakis KA, Gerosthathis TP, Kostas KV, Politis CG, Kaklis PD, Ginnis A-AI, Feurer C (2013) A bem-isogeometric method for the ship wave-resistance problem. Ocean Eng 60:53–67

    Article  Google Scholar 

  6. Peake MJ, Trevelyan J, Coates G (2013) Extended isogeometric boundary element method (xibem) for two-dimensional helmholtz problems. Comput Methods Appl Mech Eng 259:93–102

    Article  MathSciNet  Google Scholar 

  7. Ginnis AI, Duvigneau R, Politis C, Kostas KV, Belibassakis K, Gerostathis T, Kaklis PD (2013) A multi-objective optimization environment for ship-hull design based on a bem-isogeometric solver. In: The Fifth Conference on Computational Methods in Marine Engineering (Marine 2013), Hamburg, Germany

  8. Ginnis AI, Kostas KV, Politis CG, Kaklis PD, Belibassakis KA, Gerostathis TP, Scott MA, Hughes TJR (2014) Isogeometric boundary-element analysis for the wave-resistance problem using T-splines. Comput Methods Appl Mech Eng 279:425–439

    Article  MathSciNet  Google Scholar 

  9. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley Publishing

  10. Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183

    Article  Google Scholar 

  11. Evans JA, Bazilevs Y, Babuška I, Hughes TJR (2009) n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Comput Methods Appl Mech Eng 198(21):1726–1741. https://doi.org/10.1016/j.cma.2009.01.021

    Article  MathSciNet  Google Scholar 

  12. Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for nurbs-based isogeometric analysis. Comput Methods Appl Mech Eng 199(5):301–313. https://doi.org/10.1016/j.cma.2008.12.004

    Article  MathSciNet  Google Scholar 

  13. Cao W, Huang W, Russell RD (1999) An r-adaptive finite element method based upon moving mesh PDEs. J Comput Phys 149(2):221–244. https://doi.org/10.1006/jcph.1998.6151

    Article  MathSciNet  Google Scholar 

  14. Kuo Y, Cleghorn W (2007) The h-, p-, and r-refinements of finite element analysis of flexible slider crank mechanism. J Vib Control 13(4):415–435. https://doi.org/10.1177/1077546307076901

    Article  Google Scholar 

  15. Xu G, Mourrain B, Duvigneau R, Galligo A (2011) Parameterization of computational domain in isogeometric analysis: methods and comparison. Comput Methods Appl Mech Eng 200(23):2021–2031. https://doi.org/10.1016/j.cma.2011.03.005

    Article  MathSciNet  Google Scholar 

  16. Wendland WL (1988) On asymptotic error estimates for combined BEM and FEM. In: Finite Element and Boundary Element Techniques from Mathematical and Engineering Point of View, Springer, pp 273–333

  17. Carstensen C, Ernst SP (1996) Adaptive boundary element methods for some first kind integral equations. SIAM J Numer Anal 33(6):2166–83

    Article  MathSciNet  Google Scholar 

  18. Carstensen C (1997) An a posteriori error estimate for a first-kind integral equation. Math Comput 66(217):139–55

    Article  MathSciNet  Google Scholar 

  19. Sauter SA, Schwab C (2011) Boundary element methods. Boundary element methods. Springer, Berlin, pp 183–287

  20. Buffa A, Gantner G, Giannelli C, Praetorius D, Vazquez Hernandez R (2021) Mathematical foundations of adaptive isogeometric analysis. Technical Report 10.5075/epfl-MATHICSE-287076, Ecublens, EPFL

  21. Feischl M, Gantner G, Praetorius D (2015) Reliable and efficient a posteriori error estimation for adaptive iga boundary element methods for weakly-singular integral equations. Comput Methods Appl Mech Eng 290:362–386. https://doi.org/10.1016/j.cma.2015.03.013

    Article  MathSciNet  Google Scholar 

  22. Feischl M, Gantner G, Haberl A, Praetorius D (2016) Adaptive 2d iga boundary element methods. Eng Anal Boundary Elem 62:141–153

    Article  MathSciNet  Google Scholar 

  23. Gantner G, Haberlik D, Praetorius D (2017) Adaptive igafem with optimal convergence rates: Hierarchical b-splines. Math Models Methods Appl Sci 27(14):2631–2674

    Article  MathSciNet  Google Scholar 

  24. Gong YP, Dong C (2017) An isogeometric boundary element method using adaptive integral method for 3D potential problems. J Comput Appl Math 319:141–158

    Article  MathSciNet  Google Scholar 

  25. Falini A, Giannelli C, Kandǔ T, Sampoli ML, Sestini A (2019) An adaptive iga-bem with hierarchical b-splines based on quasi-interpolation quadrature schemes. Int J Numer Meth Eng 117(10):1038–1058

    Article  MathSciNet  Google Scholar 

  26. Gantner G, Praetorius D, Schimanko S (2022) Stable implementation of adaptive igabem in 2d in matlab. Comput Methods Appl Math 22(3):563–590

    Article  MathSciNet  Google Scholar 

  27. Forsey DR, Bartels RH (1988) Hierarchical b-spline refinement. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’88, Association for Computing Machinery, New York, pp 205–212. https://doi.org/10.1145/54852.378512

  28. Giannelli C, Jüttler B, Speleers H (2012) Thb-splines: The truncated basis for hierarchical splines. Comput Aided Geom Des 29(7):485–498. https://doi.org/10.1016/j.cagd.2012.03.025

    Article  MathSciNet  Google Scholar 

  29. Bornemann PB, Cirak F (2013) A subdivision-based implementation of the hierarchical b-spline finite element method. Comput Methods Appl Mech Eng 253:584–598. https://doi.org/10.1016/j.cma.2012.06.023

    Article  MathSciNet  Google Scholar 

  30. Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and TNURCCs. ACM Trans Graph 22:477–484

    Article  Google Scholar 

  31. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  MathSciNet  Google Scholar 

  32. Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356. https://doi.org/10.1016/j.cagd.2012.12.005

    Article  MathSciNet  Google Scholar 

  33. Johannessen KA, Kvamsdal T, Dokken T (2014) Isogeometric analysis using LR B-splines. Comput Methods Appl Mech Eng 269:471–514. https://doi.org/10.1016/j.cma.2013.09.014

    Article  MathSciNet  Google Scholar 

  34. Masters DA, Taylor NJ, Rendall TCS, Allen CB, Poole DJ (2017) Geometric comparison of aerofoil shape parameterization methods. AIAA J 55(5):1575–1589. https://doi.org/10.2514/1.J054943

    Article  Google Scholar 

  35. Kostas KV, Amiralin A, Sagimbayev S, Massalov T, Kalel Y, Politis CG (2020) Parametric model for the reconstruction and representation of hydrofoils and airfoils. Ocean Eng 199:107020. https://doi.org/10.1016/j.oceaneng.2020.107020

    Article  Google Scholar 

  36. Kostas KV, Ginnis AI, Politis CG, Kaklis PD (2017) Shape-optimization of 2D hydrofoils using an Isogeometric BEM solver. Comput Aided Des 82:79–87. https://doi.org/10.1016/j.cad.2016.07.002

    Article  MathSciNet  Google Scholar 

  37. Chouliaras SP, Kaklis PD, Kostas KV, Ginnis AI, Politis CG (2021) An isogeometric boundary element method for 3D lifting flows using T-splines. Comput Methods Appl Mech Eng 373:113556. https://doi.org/10.1016/j.cma.2020.113556

    Article  MathSciNet  Google Scholar 

  38. Kostas KV, Ginnis AI, Politis CG, Kaklis PD (2015) Ship-hull shape optimization with a t-spline based bem-isogeometric solver. Comput Methods Appl Mech Eng 284:611–622

    Article  MathSciNet  Google Scholar 

  39. Brebbia C, Telles J, Wrobel L (1984) Boundary element techniques. Springer

  40. Katsikadelis JT (2016) Chapter three—the bem for potential problems in two dimensions. In: Katsikadelis JT (ed) The boundary element method for engineers and scientists (Second Edition), Academic Press, Oxford, pp 35–57

  41. Kostas K, Valagiannopoulos C (2023) Optimally shaped nanotubes for field concentration. Research Square - preprints https://doi.org/10.21203/rs.3.rs-3509021/v1

  42. Piegl L, Tiller W (1997) The Nurbs Book, 2nd Edition. Springer

  43. Aimi A, Diligenti M, Sampoli ML, Sestini A (2016) Isogeometric analysis and symmetric Galerkin BEM: A 2D numerical study. Appl Math Comput 272:173–186. https://doi.org/10.1016/j.amc.2015.08.097

    Article  MathSciNet  Google Scholar 

  44. Barrera D, Bartoň M, Chiarella I, Remogna S (2022) On numerical solution of Fredholm and Hammerstein integral equations via Nyström method and Gaussian quadrature rules for splines. Appl Numer Math 174:71–88. https://doi.org/10.1016/j.apnum.2022.01.009

    Article  MathSciNet  Google Scholar 

  45. Esmaeili H, Mirzaee F, Moazami D (2021) A discrete collocation scheme to solve fredholm integral equations of the second kind in high dimensions using radial kernels. SeMA 78:93–117. https://doi.org/10.1007/s40324-020-00231-0

    Article  MathSciNet  Google Scholar 

  46. Allouch C, Sablonnière P, Sbibih D (2011) Solving fredholm integral equations by approximating kernels by spline quasi-interpolants. Numer Algorithms 56:437–453. https://doi.org/10.1007/s11075-010-9396-7

    Article  MathSciNet  Google Scholar 

  47. Dagnino C, Dallefrate A, Remogna S (2019) Spline quasi-interpolating projectors for the solution of nonlinear integral equations. J Comput Appl Math 354:360–372. https://doi.org/10.1016/j.cam.2018.06.054

    Article  MathSciNet  Google Scholar 

  48. Piegl L (1987) On the use of infinite control points in CAGD. Comput Aided Geom Des 4(1):155–166. https://doi.org/10.1016/0167-8396(87)90032-X

    Article  MathSciNet  Google Scholar 

  49. Qin K, Sun J, Wang X (1992) Representing conics using NURBS of degree two. Comput Graphics Forum 11:285–291. https://doi.org/10.1111/1467-8659.1150285

    Article  Google Scholar 

  50. Milne-Thomson LM (1956) Theoretical hydrodynamics. Macmillan Company

  51. Piegl LA, Tiller W, Rajab K (2014) It is time to drop the “R’’ from NURBS. Eng Comput 30:703–714. https://doi.org/10.1007/s00366-013-0318-x

    Article  Google Scholar 

  52. Li W, Xu S, Zhao G, Goh LP (2005) Adaptive knot placement in B-spline curve approximation. CAD Comput Aided Des 37(8):791–797. https://doi.org/10.1016/j.cad.2004.09.008

    Article  Google Scholar 

  53. Gantner G, Praetorius D, Schimanko S (2019) Adaptive isogeometric boundary element methods with local smoothness control. CoRR arxiv:abs/1903.01830

Download references

Funding

This work has received funding from Nazarbayev University, Kazakhstan under the Grant: “SOFFA - PHYS: Shape Optimization of Free-form Functional surfaces using isogeometric Analysis and Physics-Informed Surrogate Models”(Grant award Nr. 11022021FD2927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos V. Kostas.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostas, K.V., Politis, C.G., Zhanabay, I. et al. A physics-informed parametrization and its impact on 2D IGABEM analysis. Engineering with Computers 40, 3663–3682 (2024). https://doi.org/10.1007/s00366-024-02037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-024-02037-4

Keywords