Skip to main content
Log in

√2 Subdivision for quadrilateral meshes

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a \(\sqrt2\)subdivision scheme for quadrilateral meshes that can be regarded as an extension of a 4-8 subdivision with new subdivision rules and improved capability and performance. The proposed scheme adopts a so-called \(\sqrt2\)split operator to refine a control mesh such that the face number of the refined mesh generally equals the edge number and is thus about twice the face number of the coarse mesh. Smooth rules are designed in reference to the 4-8 subdivision, while a new set of weights is developed to balance the flatness of surfaces at vertices of different valences. Compared to the 4-8 subdivision, the presented scheme can be naturally generalized for arbitrary control nets and is more efficient in both space and computing time management. Analysis shows that limit surfaces produced by the scheme are C4 continuous for regular control meshes and G1 continuous at extraordinary vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball AA, Storry DJT (1988) Conditions for tangent plane continuity over recursively generated B-spline surfaces. ACM Trans Graph 7(2):83–102

    Article  MATH  Google Scholar 

  2. Bolz J, Schröder P (2001) Rapid evaluation of Catmull-Clark subdivision surfaces. In: Proceedings of Web3D’02, Tempe, AZ, 24–28 February 2002. ACM Press, New York, pp 11–17

  3. Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput Aided Des 10(6):350–355

    Google Scholar 

  4. Doo D, Sabin M (1978) Behaviour of recursive division surfaces near extraordinary points. Comput Aided Des 10(6):356–360

    Google Scholar 

  5. Dyn N, Levin D, Gregory JA (1990) A butterfly subdivision scheme for surface interpolatory with tension control. ACM Trans Graph 9(2):160–169

    Article  MATH  Google Scholar 

  6. Habbib A, Warren Joe (1999) Edge and vertex insertion for a class of.C1 subdivision surfaces. Comput Aided Geom Des 16(4):223–247

    Google Scholar 

  7. Halstead M, Kass M, DeRose T (1993) Efficient, fair interpolation using Catmull-Clark surfaces. In: Proceedings of ACM SIGGRAPH, California, August 1993. Comput Graph 20:35–44

    Google Scholar 

  8. Kobbelt L (1996) Interpolatory subdivision on open quadrilateral nets with arbitrary topology. In: Proceedings of EUROGRAPHICS, Poitiers, France, 26–30 August 1996, Comput Graph Forum 15(3):409–410

  9. Kobbelt L (2000) \(\sqrt3\)-Subdivision. In: Proceedings of ACM SIGGRAPH, New Orleans, 23–28 July 2000. Comput Graph 27:103–112

    Google Scholar 

  10. Labsik U, Greiner G (2000) Interpolatory \(\sqrt3\)-subdivision. In: Proceedings of EUROGRAPHICS, Interlaken, Switzerland, 21–25 August 2000. Comput Graph Forum 19(3):131–138

    Google Scholar 

  11. Lane J, Riesenfeld R (1980) A theoretical development for the computer generation, display of piecewise polynomial surfaces. IEEE Trans Patt Anal Mach Intell 2:35–46

    MATH  Google Scholar 

  12. Loop C (1987) Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics

  13. Maillot J, Stam J (2001) A unified subdivision scheme for polygonal modeling. Comput Graph Forum 20(3):471–479

    Google Scholar 

  14. Oswald P, Schröder P (2003) Composite primal/dual \(\sqrt3\)-subdivision schemes. Comput Aided Geom Des 20(3):135–164

    Google Scholar 

  15. Peters J, Reif U (1997) The simplest subdivision scheme for smoothing polyhedra. ACM Trans Graph 16(4):420–431

    Article  Google Scholar 

  16. Peters J, Reif U (1998) Analysis of algorithms generalizing B-spline subdivision. SIAM J Numer Anal 35(2):728–748

    Article  MathSciNet  MATH  Google Scholar 

  17. Prautzsch H (1998) Smoothness of subdivision surfaces at extraordinary points. Adv Comput Math 9(3–4):377–389

    Google Scholar 

  18. Prautzsch H, Umlauf G (1998a) A G2-subdivision algorithm. In: Farin G, Bieri H, Brunnet G, DeRose T (eds) Geometric modeling, computing supplement 13. Springer, Berlin Heidelberg New York, pp 217–224

  19. Prautzsch H, Umlauf G (1998b) Improved triangular subdivision schemes. In: Wolter F-E, Patrikalakis NM (eds) Proceedings of CGI ’98, Hannover, Germany, 22–24 June 1998, pp 626–632

  20. Prautzsch H, Umlauf G (2000) A G1 and a G2 subdivision scheme for triangular nets. Int J Shape Model 6(1):21–35

    Google Scholar 

  21. Reif U (1995) A unified approach to subdivision algorithms near extraordinary vertices. Comput Aided Geom Des 12(2):153–174

    Google Scholar 

  22. Stam J (1998a) Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values. In: Proceedings of ACM SIGGRAPH, Orlando, FL, 19–24 July 1998. Computer Graphics 25:395–404

    Google Scholar 

  23. Stam J (1998b) Evaluation of loop subdivision surfaces. In: Proceedings of ACM SIGGRAPH, Computer Graphics, CD-ROM

  24. Stam J (2001) On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. Comput Aided Geom Des 18(5):383–396

    Google Scholar 

  25. Umlauf G (2000) Analyzing the characteristic map of triangular subdivision schemes. Constr Approx 16(1):145–155

    Article  MathSciNet  MATH  Google Scholar 

  26. Velho L, Zorin D (2001) 4-8 Subdivision. Comput Aided Geom Des 18(5):397–427

    Google Scholar 

  27. Warren J, Weimer H (2001) Subdivision methods for geometric design: a constructive approach. Morgan Kaufmann, New York

    Google Scholar 

  28. Zorin D (1998) Stationary subdivision and multiresolution surface representation. Ph.D Thesis, California Institute of Technology, Pasadena, CA

  29. Zorin D (2000a) Smoothness of stationary subdivision on irregular meshes. Constr Approx 16(3):359–397

    Article  MathSciNet  MATH  Google Scholar 

  30. Zorin D (2000b) A method for analysis of C1-continuity of subdivision surfaces. SIAM J Numer Anal 37(5):1677–1708

    Article  MATH  Google Scholar 

  31. Zorin D, Schröder P (2001) A unified framework for primal/dual quadrilateral subdivision scheme. Comput Aided Geom Des 18(5):429–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyin Ma .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li , G., Ma , W. & Bao , H. √2 Subdivision for quadrilateral meshes. Visual Comp 20, 180–198 (2004). https://doi.org/10.1007/s00371-003-0238-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-003-0238-7

Keywords

Navigation