Abstract
A novel editing method for large triangular meshes is presented. We detect surface features, such as edge and corners, by computing local zero and first surface moments, using a robust and noise resistant method. The feature detection is encoded in a finite element matrix, passed to an algebraic multigrid (AMG) algorithm. The AMG algorithm generates a matrix hierarchy ranging from fine to coarse representations of the initial fine grid matrix. This hierarchy comes along with a corresponding multiscale of basis functions, which reflect the surface features on all hierarchy levels. We consider either these basis functions or distinct sets from an induced multiscale domain decomposition as handles for surface manipulation. We present a multiscale editor which enables Boolean operations on this domain decomposition and simply algebraic operations on the basis functions. Users can interactively design their favorite surface handles by simple grouping operations on the multiscale of domains. Several applications on large meshes underline the effectiveness and flexibility of the presented tool.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alvarez L, Guichard F, Lions P-L, Morel J-M (1993) Axioms and fundamental equations of image processing. Arch Ration Mech Anal 123(3):199–257
Biermann H, Kristjansson D, Zorin D (2001) Approximate boolean operations on free-form solids. Computer Graphics Proceedings (SIGGRAPH’01) 28:185–194
Brandt A (1983) Algebraic multigrid theory: the symmetric case. In: Preliminary Proceedings for the International Multigrid Conference, Copper Mountain, CO, April 1983
Brandt A (1986) Algebraic multigrid theory: the symmetric case. Appl Math Comput 19:23–56
Brandt A, McCormick SF, Ruge JW (1982) Algebraic multigrid for automatic multigrid solutions with application to geodetic computations. Technical Report, Institute for Computational Studies, Fort Collins, CO, October 1982
Brandt A, McCormick SF, Ruge JW (1984) Algebraic multigrid for SparseMatrix equations. In: Evans DJ (ed) Sparsity and its applications. Cambridge University Press, Cambridge
Brezina M, Cleary AJ, Falgout RD, Henson VE, Jones JE, Manteuffel TA, McCormick SF, Ruge JW (2000) Algebraic multigrid based on element interpolation (AMGe). SIAM J Sci Comput 22(5):1570–1592
Caselles V, Catté F, Coll T, and Dibos F (1993) A geometric model for active contours in image processing. Numer Math 66:1–31
Chartier TP (2002) Spectral AMGe (ρAMGe). Abstracts of the Seventh Copper Mountain Conference on Iterative Methods, vol. 2
Chazelle B, Dobkin DP, Shouraboura N, Tal A (1997) Strategies for polyhedral surface decomposition: an experimental study. In: Computational geometry, theory and applications, vol. 7 (4-5), pp 327–342
Clarenz U, Diewald U, Rumpf M (2000) Nonlinear anisotropic diffusion in surface processing. In: Proc. IEEE Visualization. IEEE CS Press, Los Alamitos, CA, pp 397–405
Clarenz U, Rumpf M, Telea A (2004) Robust feature detection and local classification for surfaces based on moment analysis. IEEE Trans Vis Comput Graph, in press
Deriche R (1987) Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int J Comp Vis 1:167–187
Desbrun M, Meyer M, Schroeder P, Barr A (2000) Anisotropic feature preserving denoising of height fields and bivariate data. In: Graphics Interface’00 Proceedings. AK Peters Ltd., Wellesley, MA, pp 145–152
do Carmo MP (1993) Riemannian geometry. Birkhäuser, Basel
Grauschopf T, Griebel M, Regler H (1997) Additive multilevel- preconditioners based on bilinear interpolation, matrix dependent geometric coarsening and algebraic multigrid coarsening for second order elliptic PDEs. Appl Numer Math 23(1):63–96
Gregory A, State A, Lin M, Manocha D, Livingston M (1998) Feature-based surface decomposition for correspondence and morphing between polyhedra. In: Proc. of Computer Animation, pp 64–71
Guskov I, Sweldens W, Schroeder P (1999) Multiresolution signal processing for meshes. In: Comput Graph (SIGGRAPH ’99 Proceedings). ACM Press, New York, NY, pp 325–334
Hubeli A, Gross MH (2001) Multiresolution feature extraction from unstructured meshes. In: Proc. IEEE Visualization. IEEE CS Press, Los Alamitos, CA, pp 287–294
Kobbelt L, Campagna S, Vorsatz J, Seidel H-P (1998) Interactive multi-resolution modeling on arbitrary meshes. In: Computer Graphics (SIGGRAPH’98 Proceedings), pp 105–114
Mundy JL, Zisserman A (1992) Geometric invariance in computer vision. MIT Press, Boston
Lee A, Sweldens W, Schroeder P, Cowsar L, Dobkin D (1998) Maps: multiresolution adaptive parametrization of surfaces. In: Computer Graphics (SIGGRAPH’98 Proceedings), pp 95–104
Lévy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. In: Computer Graphics (SIGGRAPH’02 Proceedings), pp 362–371
Mangan AP, Whitaker RT (1999) Partitioning 3D surface meshes using watershed segmentation. IEEE Trans Vis Comput Graph 5(4):308–321
Moreton HP, Séquin CH (1992) Functional optimization for fair surface design. In: Proc. ACM SIGGRAPH, pp 167–176
Perona P, Malik J (1990) Scale space and edge detection using anisotropic diffusion. IEEE Trans Pattern Mach Intell 12(7):629–639
Ruge JW, Stüben K (1985) Efficient solution of finite difference and finite element equations by algebraic multigrid. In: Paddon DJ, Holstein H (eds) Multigrid methods for integral and differential equations. The Institute of Mathematics and its Applications Conference Series. Clarendon Press, Oxford, UK
Sharon E, Brandt A, Basri R (2000) Fast multiscale image segmentation. In: Proc. IEEE CVPR. IEEE CS Press, Los Alamitos, CA, pp 70–77
Taubin G (1992) Recognition and positioning of rigid objects using algebraic and moment invariants. Dissertation, Brown University, Providence, RI
Trottenberg U, Osterlee CW, Schüller A (2001) Multigrid, Appendix A. In: Stüben K (ed) An introduction to algebraic multigrid. Academic, San Diego, pp 413–532
Weickert J (1996) Foundations and applications of nonlinear anisotropic diffusion filtering. Z Angew Math Mech 76:283– 286
Wu J, Hu S, Tai C, Sun J (2001) An effective feature-preserving mesh simplification scheme based on face constriction. In: Proc. Pacific Graphics 2001, pp 12–21
Harel D, Koren Y, Carmel L (2002) Ace: a fast multiscale eigenvectors computation for drawing huge graphs. In: Proc. IEEE Info-Vis. IEEE CS Press, Los Alamitos, CA, pp 137–144
Zorin D, Schröder P, Sweldens W (1997) Interactive multiresolution mesh editing. Computer Graphics Proceedings (SIGGRAPH’96), pp 259–269
Zuckerberger E, Tal A, Shlafman S (2002) Polyhedral surface decomposition with applications. Comput Graph 26(5):733–743
Zwicker M, Pauly M, Knoll O, Gross M (2002) Pointshop 3d: an interactive system for point-based surface editing. In: Proc. Computer Graphics and Interactive Techniques. ACM Press, New York, NY, pp 322–329
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Clarenz, U., Griebel, M., Rumpf, M. et al. Feature sensitive multiscale editing on surfaces. Vis Comput 20, 329–343 (2004). https://doi.org/10.1007/s00371-004-0245-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-004-0245-3