Skip to main content
Log in

Delphi: geometry-based connectivity prediction in triangle mesh compression

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Delphi is a new geometry-guided predictive scheme for compressing the connectivity of triangle meshes. Both compression and decompression algorithms traverse the mesh using the EdgeBreaker state machine. However, instead of encoding the EdgeBreaker clers symbols that capture connectivity explicitly, they estimate the location of the unknown vertex, v , of the next triangle. If the predicted location lies sufficiently close to the nearest vertex, w , on the boundary of the previously traversed portion of the mesh, then Delphi estimates that v coincides with w . When the guess is correct, a single confirmation bit is encoded. Otherwise, additional bits are used to encode the rectification of that prediction. When v coincides with a previously visited vertex that is not adjacent to the parent triangle (EdgeBreaker S case), the offset, which identifies the vertex v , must be encoded, mimicking the cut-border machine compression proposed by Gumhold and Strasser. On models where 97% of Delphi predictions are correct, the connectivity is compressed down to 0.19 bits per triangle. Compression rates decrease with the frequency of wrong predictors, but remains below 1.50 bits per triangle for all models tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alliez P, Desbrun M (2001) Valence-driven connectivity encoding for 3D meshes. Eurographics 2001 conference proceedings

  2. Alliez P, Desbrun M (2001) Progressive encoding for lossless transmission of 3D meshes. SIGGRAPH 2001 conference proceedings

  3. Cohen-Or D, Levin D, Remez O (1999) Progressive compression of arbitrary triangular meshes. Visualization 99 Conference Proceedings, pp 67–72

  4. Deering M (1995) Geometry compression. Computer Graphics Proceedings SIGGRAPH’95, pp 13–20

  5. Evans F, Skiena S, Varshney A (1996) Optimizing triangle strips for fast rendering. Proceedings, IEEE Vizualization’96, pp 319–326

  6. Gumhold S, Strasser W (1998) Real time compression of triangle mesh connectivity. SIGGRAPH’98, pp 133–140

  7. Hoppe H (1996) Progressive meshes. SIGGRAPH’96 Conference Proceedings, pp 99–108

  8. Gumhold S (2000) Towards optimal coding and ongoing research. 3D Geometry Compression Course Notes, SIGGRAPH’2000

  9. Isenburg M, Snoeyink J (2001) Spirale Reversi: reverse decoding of the EdgeBreaker encoding. Comput Geom 20(1):39–52

    Article  MathSciNet  Google Scholar 

  10. Khoddakovsky A, Schroeder P, Sweldens W (2000) Progressive geometry compression, SIGGRAPH’2000, pp 271–278

  11. King D, Rossignac J (1999) Guaranteed 3.67 Vbit encoding of planar triangle graphs, 11th Canadian Conference on Computational Geometry (CCCG99), pp 146–149

  12. King D, Rossignac J (1999) Connectivity compression for irregular quadrilateral meshes. Research report GIT-GVU-99-29

  13. Lee H, Alliez P, Desbrun M (2002) Angle-analyzer: a triangle-quad mesh Codec. Eurographics 2002

  14. Pajarola R, Rossignac J (1999) Compressed progressive meshes. IEEE Trans Vis Comput Graph, pp 47–61

  15. Rossignac J, Cardoze D (1999) Matchmaker: manifold breps for non-manifold r-sets. Proceedings of the ACM Symposium on Solid Modeling, pp 31–41

  16. Rossignac J (1999) EdgeBreaker: connectivity compression for triangle meshes. IEEE Trans Vis Comput Graph 5(1):47–61

    Article  Google Scholar 

  17. Rossignac J, Szymczak A (1999) Wrap&Zip decompression of the connectivity of triangle meshes compressed with EdgeBreaker. Comput Geom Theory Appl 14(1/3):119–135

    Google Scholar 

  18. Rossignac J, Safonova A, Syzmczak A (2001) 3D compression made simple: EdgeBreaker on a corner-table. Invited lecture at the Shape Modeling International Conference, Genova, Italy

    Google Scholar 

  19. Szymczak A, King D, Rossignac J (2001) An EdgeBreaker-based efficient compression scheme for connectivity of regular meshes. J Comput Geom Theory Appl 20(2):53–68

    Article  MathSciNet  Google Scholar 

  20. Tzschach H, Hasslinger G (1993) Codes für den störungsfreien Datentransfer. Oldenbourg, Oldenburg, in German

  21. Taubin G, Rossignac J (1998) Geometric compression through topological surgery. ACM Trans Graph 17(2):84–115

    Article  Google Scholar 

  22. Taubin G, Gueziec A, Horn W, Lazarus F (1998) Progressive forest split compression. SIGGRAPH’98, pp 123–132

  23. Touma C, Gotsman C (1998) Triangle mesh compression. Proceedings Graphics Interface 98, pp 26–34

  24. Tutte W (1962) A census of planar triangulations. Can J Math 14:21–38

    Article  MathSciNet  Google Scholar 

  25. Guskov I, Vidimce K, Sweldens W, Schroeder P (2000) Normal meshes. SIGGRAPH 2000, pp 95–102

  26. Szymczak A, Rossignac J, King D (2002) Piecewise regular meshes: construction and compression. Graph Models 64:183–198

    Article  Google Scholar 

  27. Attene M, Falcidieno B, Spagnuolo M, Rossignac J (2003) SwingWrapper: retiling triangle meshes for better EdgeBreaker compression. ACM Trans Graph 22(4):982–996

    Article  Google Scholar 

  28. Valette S, Rossignac J, Prost R (2003) An efficient subdivision inversion for Wavemesh-based progressive compression of 3d triangle meshes. IEEE International Conference on Image Processing (ICIP), Barcelona, Spain

  29. Lopes H, Rossignac J, Safanova A, Szymczak A, Tavares G (2002) A simple compression algorithm for surfaces with handles. ACM Symposium on Solid Modeling, Saarbrücken, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Coors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coors, V., Rossignac, J. Delphi: geometry-based connectivity prediction in triangle mesh compression. Vis Comput 20, 507–520 (2004). https://doi.org/10.1007/s00371-004-0255-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-004-0255-1

Keywords

Navigation