Skip to main content

Advertisement

Log in

The Evolution of a WILDLAND Forest FIRE FRONT

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The rate of the spread and shape of a forest fire front is a problem that has not been thoughtfully studied from a computer graphics perspective. Here, using physically based computer graphics modeling, we propose a model for the simulation of wildland fires over 3D complex terrain. The model is based on conservation laws of energy and species, which includes radiation convection, reaction and natural convection, and takes into account the endothermic and exothermic phases of this kind of phenomenon. As an application, a simulation of a wildland fire in the Ebro basin of Spain is presented. The results are visualized on synthetic imagery, obtained by using the digital model of the studied terrain plus its corresponding images acquired by the Spot 4 and LandSat TM satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahrens J et al. (1997) Case study: wildfire visualization. IEEE Visualization 97 Conf. Proc., IEEE Computer Society Press, Los Alamitos, CA, pp 451–454

    Google Scholar 

  2. Albini FA (1976) Estimating wildfire behavior and effects. General technical report INT-30. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT

  3. Albini FA (1976) Computer based models of wildland fire behavior: a user manual. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT

    Google Scholar 

  4. Anderson HE (1982) Aids to determining fuel models for estimating fire behaviour. General technical report INT-122. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT

  5. Anderson HE (1983) Predicting wind-driven wild land fire size and shape. USDA Forest Service General Technical Report, INT-305. Ogden, UT

  6. Andrews PL, Chase CH (1989) BEHAVE: fire behavior prediction and fuel modeling system – burn subsystem. General technical report INT-260. USDA Forest Service, Intermountain Research Station, Ogden, UT

  7. Antonovski AY, Ter-Mikaelian MT, Furyaev VV (1992) A spatial model of long-term forest fire dynamics and its applications to forests in western Siberia. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, Cambridge, pp 373–403

  8. Asensio MI (1998) Simulación numérica de procesos de combustión en medios naturals. Dissertation, University of Salamanca

  9. Baker WL (1993) Spatially heterogeneous multi-scale response of landscapes to fire suppression. Oikos 66:66–71

    Google Scholar 

  10. Baraff D, Witkin A, Kass M (2003) Untangling cloth. Proceedings of SIGGRAPH 2003, ACM Press, ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, pp 862–870

  11. Bebernes J, Eberly D (1989) Mathematical problems from combustion theory. Applied mathematical science, vol. 83. Springer, Berlin Heidelberg New York

  12. Bossert JE et al. (1998) Coupled weather and wildfire behaviour modeling: an overview. 2nd Symp. on Fire and Forest Meteorology, Am. Meteorological Soc., Boston, MA

    Google Scholar 

  13. Bukowski R, Sequin C (1997) Interactive simulation of fire in virtual building environments. Proceedings of SIGGRAPH 1997, ACM SIGGRAPH, Computer Graphics Proceedings. ACM Press, New York

  14. Burgan RE, Rothermel RC (1984) BEHAVE: fire behavior prediction and fuel modeling system. USDA Forest Service General Technical Report INT-167

  15. Candel S et al. (1996) Problems and perspectives in numerical combustion. In: Computational methods in applied sciences’96. Wiley, New York

  16. Catchpole WR (1985) Fire models for heatland. Mathematica department report N. 21/85. Faculty of military studies, University of New South Wales

  17. Cerimele MM, Guarguaglini FR, Moltedo L (1991) Visualizations for a numerical simulation of a flame diffusion model. Comput Graph 15(2):231–235

    Google Scholar 

  18. Chiba N, Muraoka K, Takahashi H, Miura M (1994) Two dimensional visual simulation of flames, smoke and the spread of fire. J Visual Comput Anim (5):37–53

    Google Scholar 

  19. Chou YH (1992) Management of wildfires with a geographical information system. Int J Geog Inf Syst 6(2):123–140

    Google Scholar 

  20. Chuviesca E(1996) Fundamentos de teledetección espacial. Ediciones Rialp

  21. Cox G (1992) Some recent progress in the field modeling of fire. In: Weicheng F, Zhu-man F (eds) Fire science and technology. International Academic Publishers, Hefei, China

  22. Cox G (1995) Combustion fundamentals of fire. Academic, Dordrecht

  23. Delgado Martín L et al. (1997) Meteorology and forest fires – conditions for ignition and conditions for development. J Appl Meteorol 36(6):705–710

    Google Scholar 

  24. Devlin K, Chalmers A (2001) Realistic visualization of the Pompeii frescoes. In: Chalmers A, Lalioti V (eds) AFRIGRAPH 2001, ACM SIGGRAPH

  25. Ferragut L, Asensio MI, Montenegro R, Plaza A, Winter G, Serón FJ (1996) A model for fire simulation in Landscapes. In: Desideri JA, Hirsch C, Le Tallec P, Pandolfi M, Periaux J (eds) Computational fluid dynamics. Wiley, New York

  26. Finney MA (1993) Modeling the spread and behavior of prescribed natural fires. Proceedings of the 12th International Conference on Fire and Forest Meteorology, Jekyll Island, GA

  27. Fransden WH (1971) Fire spread through porous fuels from the conservation energy. Combust Flame 16:9–16

    Google Scholar 

  28. García Díez L et al. (1994) An objective forecasting model for the daily outbreak of forest fires based on meteorological considerations. J Appl Meteorol 33(4):519–526

    Google Scholar 

  29. Gardner G (1992) Fractal ellipsoid fire. SIGGRAPH Video Rev issue 81, video 14

  30. Gardner RH, Romme WH, Turner MG (1999) Predicting forest fire effects at landscape scales. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscapes: approaches and applications. Cambridge University Press, Cambridge

  31. Godunov S (1979) Résolution numérique des problémes multidimensionels de la dynamique des gaz. Mir, Moscow

  32. Goktein TG, Bargteil AW, O’Brien JF (2004) A method for animating viscoelastic fluids. Proceedings of SIGGRAPH 2004, Computer Graphics Proceedings. ACM Press, New York

  33. Govindarajan J, Ward M, Barnett J (1999) Visualizing simulated room fires. IEEE Visualization 99

  34. Green DG, Gill AM, Noble IR (1983) Fire shapes and the adequacy of firespread models. Ecol Model (20):33 –45

    Google Scholar 

  35. Gutiérrez D, Magallón J, Camarero R, Serón F (2001) Generación de vuelos virtuales: obtención de mallados más densos y detección de cauces sobre un modelo digital de terreno. XIII Congreso Internacional de Ingeniería gráfica (CIIG 01). Badajoz, Spain

  36. Gwynfor DR (1988) Numerical simulation of forest fires. Int J Num Method Eng 25:625–633

    Google Scholar 

  37. Hargrove WW et al. (2000) Simulating fire patterns in heterogeneous landscapes. Ecol Model (135):243 –263

    Google Scholar 

  38. Henderson TC et al. (2000) Simulating accidental fires and explosions. Comput Sci Eng March/April:64–76

  39. Inakage M (1989) A simple model of flames. Proceedings of Computer Graphics International’89. Springer, Berlin Heidelberg New York

  40. Inakage, M (1991) Modeling laminar flames. SIGGRAPH 1991 Course Notes 27:6–10

    Google Scholar 

  41. Izbecki S, Keane R (1989) An attempt at developing a crown fire ignition model. Final Report INT-88352-COA. US Forest Service, Intermountain Fire Sciences Laboratory, Missoula, MT

  42. Keane RE, Ryan KC, Running SW (1996) Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC. Tree Physiol (16):319 –331

    Google Scholar 

  43. Kessell SR (1976) Gradient modeling: a new approach to fire modeling and wilderness resource management. Environ Manage (1):39–48

    Google Scholar 

  44. Kourtz P, O ’Regan WG (1971) A model for a small forest fire. For Sci (17):163–169

    Google Scholar 

  45. Krajewski S, Gibbs B (1996) Understading contouring: a practical guide to spatial estimation and contouring using a computer and basics of using variograms. Gibbs Associates, Boulder, CO, USA

    Google Scholar 

  46. Losano F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. Proceedings of SIGGRAPH 2004, Computer Graphics Proceedings. ACM Press, New York, pp 457–462

  47. Luebke D, Reddy M, Cohen J, Varshney A, Watson B, Huebner R (2003) Level of detail for 3D graphics. Morgan Kaufmann, San Francisco, CA, USA

  48. MacKay G, Jan N (1984) Forest fires as critical phenomena. J Phys Math Gen 17:L757–L776

    Google Scholar 

  49. Magallón J, Gutiérrez D, Serón F (2000) OVDG: sistema de recreación de vuelos virtuales basado en datos topográficos reales. Aplicación a la cuenca del Ebro. XII Congreso Internacional de Ingeniería gráfica (CIIG 00) Valladolid, Spain

  50. Martínez-Millán J (1991) CARDIN: un sistema para la simulación de la propagación de incendios forestales. Instituto Nacional de Investigación y Tecnología Agraria, MAPA. Investigación Agraria, Sistemas y Recursos Forestales, Separata N. 10. Madrid, Spain

  51. Martínez Falero JE (1996) PIROMACOS: sistema para el control de incendios forestales. Mapping 29:51–68

    Google Scholar 

  52. Montenegro R, Plaza A, Ferragut L, Asensio MI (1997) Application of a nonlinear evolution model to fire propagation. Nonlinear analysis. Theory, methods & applications. Proc. 2nd World Congress of Nonlinear Analysis. Elsevier, Amsterdam 30(5):2873–2882

  53. Neff M, Fiume E (1999) A visual model for blast waves and fracture. Proceedings of the 1999 conference on Graphics Interface ’99, pp 193–202, Morgan Kaufmann, San Francisco, CA, USA

  54. O’Regan WG, Kourtz P, Nozaki S (1976) Bias in the contagion analog to fire spread. For Sci (22):61 –68

    Google Scholar 

  55. Ohtsuki T, Keyes T (1986) Biased percolation: forest fires with wind. J Phys Mathemat Gen (19):L281–L287

    Google Scholar 

  56. Paramount (1982) Star Trek II: The Wrath of Kahn. Genesis Demo, SIGGRAPH Video Review. ACM SIGGRAPH, New York

    Google Scholar 

  57. Peacock RD, Forney G, Reneke PA, Portier R, Jones WW (1993) CFAST, the consolidated model of fire and smoke transport. NIST Technical Note 1299. National Institute of Standards and Technology, USA

  58. Perlin K (1998) Noise, hypertexture, antialiasing and gesture. Texturing and modeling: a procedural approach, 2nd edn, chap. 9. AP Professional, Boston, MA, USA

    Google Scholar 

  59. Perry C, Picard R (1994) Synthesizing flames and their spread. SIGGRAPH’94 Technical Sketches Notes

  60. Rasmussen N, Nguyen DQ, Geiger W, Fedkiw R (2003) Smoke simulation for large scale phenomena. Proceedings of SIGGRAPH 2003, Computer Graphics Proceedings. ACM Press, New York

  61. Reeves W (1983) Particle systems. a technique for modeling a class of fuzzy objects. Computer Graphics Proceedings, SIGGRAPH’83, 17(3):359–376

    Google Scholar 

  62. Reisner J, Smolarkiewicz P (1994) Thermally forced low froude number flow past three-dimensional obstacles. J Atmosph Sci 51(1):117–33

    Google Scholar 

  63. Richards GD (1988) Numerical simulation of forest trees. Int J Numer Methods Eng 25:625–633

    Google Scholar 

  64. Richards GD (1993) The properties of elliptical wildfire growth for time dependent fuel and meteorological conditions. Combust Sci Technol 94:357–383

    Google Scholar 

  65. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research paper, INT-115. USDA Forest Service, Ogden, UT

  66. Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service Technical Report INT-143

  67. Rothermel RC, Burgan RE (1984) BEHAVE: fire behavior prediction and fuel odeling system – fuel subsystem. General technical report INT-167. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT

  68. Rushmeier H (1994) Rendering participating media: problems and solutions from application areas. Proceedings of the Fifth Eurographics Workshop on Rendering

    Google Scholar 

  69. Rushmeier H, Hamins A, Young Choi M (1995) Volume rendering of pool fire data. IEEE Comput Graph Appl

  70. Rzeznik MJ, O’Neill JG, McGrattan KB (1999) Smithsonian’s Dulles Center using advanced computer fire modeling techniques in performance based design. International Conference on Fire Research and Engineering (ICFRE3) Chicago, IL. Society of Fire Protection Engineers, Boston, MA

  71. Sims K (1990) Particle animation and rendering using data parallel computation. Comput Graph 24(4):405–413

    Google Scholar 

  72. Stam J, Fiume E (1993) Turbulent wind fields for gaseous phenomena. Computer Graphics Proceedings, SIGGRAPH’93, pp 369–376

  73. Stam J (1994) Stochastic rendering of density fields. Proceedings of Graphics Interface’94, pp 51–58

  74. Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. Computer Graphics Proceedings, SIGGRAPH’95, pp 129–136

  75. Stam J (1999) Stable fluids. Computer Graphics Proceedings, ACS, SIGGRAPH’99, pp 121–128

  76. Thalmman N, Thalmman D (1987) Image synthesis. Springer, Berlin Heidelberg New York

  77. Turner MG, Gardner RH, Romme WH (1994) Landscape disturbance models and the long-term dynamics of natural areas. Nat Areas J 14:3–11

    Google Scholar 

  78. Vasconcelos MJ, Guertin DP (1992) FIREMAP: simulation of fire growth with a geographic information system. Int J Wildland Fire 2:87–96

    Google Scholar 

  79. Wade C (1999) A new engineering tool for evaluating the fire hazard in rooms. Building Control Commission International Convention, Melbourne, Australia

  80. Van Wagner CE (1977) Conditions for the start and spread of crown fires. Can J For Res (7):23–34

    Google Scholar 

  81. Weber RO (1991) Towards a comprehensive wildfire spread model. Int J Wildland Fire 1(4):245–248

    Google Scholar 

  82. Welch S, Rubini P (1997) Three dimensional simulation of a fire resistance furnace. Proc Fifth International Symposium on Fire Safety Science, IAFSS

  83. Williams FA (1985) Combustion theory, 2nd edn. Benjamin Cummings, Menlo Park

  84. Yngve GD, O’Brien JF, Hodgins JK (2000) Animating explosions. Proceedings of SIGGRAPH 2000, ACM SIGGRAPH, Computer Graphics Proceedings. ACM Press, New York, 29–36

  85. Zeldovich YB (1985) The mathematical theory of combustion and explosions. Consultants Bureau, New York, NY, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Serón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serón, F., Gutiérrez, D., Magallón, J. et al. The Evolution of a WILDLAND Forest FIRE FRONT. Visual Comput 21, 152–169 (2005). https://doi.org/10.1007/s00371-004-0278-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-004-0278-7

Keywords

Navigation