Abstract
The rate of the spread and shape of a forest fire front is a problem that has not been thoughtfully studied from a computer graphics perspective. Here, using physically based computer graphics modeling, we propose a model for the simulation of wildland fires over 3D complex terrain. The model is based on conservation laws of energy and species, which includes radiation convection, reaction and natural convection, and takes into account the endothermic and exothermic phases of this kind of phenomenon. As an application, a simulation of a wildland fire in the Ebro basin of Spain is presented. The results are visualized on synthetic imagery, obtained by using the digital model of the studied terrain plus its corresponding images acquired by the Spot 4 and LandSat TM satellites.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahrens J et al. (1997) Case study: wildfire visualization. IEEE Visualization 97 Conf. Proc., IEEE Computer Society Press, Los Alamitos, CA, pp 451–454
Albini FA (1976) Estimating wildfire behavior and effects. General technical report INT-30. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT
Albini FA (1976) Computer based models of wildland fire behavior: a user manual. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT
Anderson HE (1982) Aids to determining fuel models for estimating fire behaviour. General technical report INT-122. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT
Anderson HE (1983) Predicting wind-driven wild land fire size and shape. USDA Forest Service General Technical Report, INT-305. Ogden, UT
Andrews PL, Chase CH (1989) BEHAVE: fire behavior prediction and fuel modeling system – burn subsystem. General technical report INT-260. USDA Forest Service, Intermountain Research Station, Ogden, UT
Antonovski AY, Ter-Mikaelian MT, Furyaev VV (1992) A spatial model of long-term forest fire dynamics and its applications to forests in western Siberia. In: Shugart HH, Leemans R, Bonan GB (eds) A systems analysis of the global boreal forest. Cambridge University Press, Cambridge, pp 373–403
Asensio MI (1998) Simulación numérica de procesos de combustión en medios naturals. Dissertation, University of Salamanca
Baker WL (1993) Spatially heterogeneous multi-scale response of landscapes to fire suppression. Oikos 66:66–71
Baraff D, Witkin A, Kass M (2003) Untangling cloth. Proceedings of SIGGRAPH 2003, ACM Press, ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, pp 862–870
Bebernes J, Eberly D (1989) Mathematical problems from combustion theory. Applied mathematical science, vol. 83. Springer, Berlin Heidelberg New York
Bossert JE et al. (1998) Coupled weather and wildfire behaviour modeling: an overview. 2nd Symp. on Fire and Forest Meteorology, Am. Meteorological Soc., Boston, MA
Bukowski R, Sequin C (1997) Interactive simulation of fire in virtual building environments. Proceedings of SIGGRAPH 1997, ACM SIGGRAPH, Computer Graphics Proceedings. ACM Press, New York
Burgan RE, Rothermel RC (1984) BEHAVE: fire behavior prediction and fuel modeling system. USDA Forest Service General Technical Report INT-167
Candel S et al. (1996) Problems and perspectives in numerical combustion. In: Computational methods in applied sciences’96. Wiley, New York
Catchpole WR (1985) Fire models for heatland. Mathematica department report N. 21/85. Faculty of military studies, University of New South Wales
Cerimele MM, Guarguaglini FR, Moltedo L (1991) Visualizations for a numerical simulation of a flame diffusion model. Comput Graph 15(2):231–235
Chiba N, Muraoka K, Takahashi H, Miura M (1994) Two dimensional visual simulation of flames, smoke and the spread of fire. J Visual Comput Anim (5):37–53
Chou YH (1992) Management of wildfires with a geographical information system. Int J Geog Inf Syst 6(2):123–140
Chuviesca E(1996) Fundamentos de teledetección espacial. Ediciones Rialp
Cox G (1992) Some recent progress in the field modeling of fire. In: Weicheng F, Zhu-man F (eds) Fire science and technology. International Academic Publishers, Hefei, China
Cox G (1995) Combustion fundamentals of fire. Academic, Dordrecht
Delgado Martín L et al. (1997) Meteorology and forest fires – conditions for ignition and conditions for development. J Appl Meteorol 36(6):705–710
Devlin K, Chalmers A (2001) Realistic visualization of the Pompeii frescoes. In: Chalmers A, Lalioti V (eds) AFRIGRAPH 2001, ACM SIGGRAPH
Ferragut L, Asensio MI, Montenegro R, Plaza A, Winter G, Serón FJ (1996) A model for fire simulation in Landscapes. In: Desideri JA, Hirsch C, Le Tallec P, Pandolfi M, Periaux J (eds) Computational fluid dynamics. Wiley, New York
Finney MA (1993) Modeling the spread and behavior of prescribed natural fires. Proceedings of the 12th International Conference on Fire and Forest Meteorology, Jekyll Island, GA
Fransden WH (1971) Fire spread through porous fuels from the conservation energy. Combust Flame 16:9–16
García Díez L et al. (1994) An objective forecasting model for the daily outbreak of forest fires based on meteorological considerations. J Appl Meteorol 33(4):519–526
Gardner G (1992) Fractal ellipsoid fire. SIGGRAPH Video Rev issue 81, video 14
Gardner RH, Romme WH, Turner MG (1999) Predicting forest fire effects at landscape scales. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscapes: approaches and applications. Cambridge University Press, Cambridge
Godunov S (1979) Résolution numérique des problémes multidimensionels de la dynamique des gaz. Mir, Moscow
Goktein TG, Bargteil AW, O’Brien JF (2004) A method for animating viscoelastic fluids. Proceedings of SIGGRAPH 2004, Computer Graphics Proceedings. ACM Press, New York
Govindarajan J, Ward M, Barnett J (1999) Visualizing simulated room fires. IEEE Visualization 99
Green DG, Gill AM, Noble IR (1983) Fire shapes and the adequacy of firespread models. Ecol Model (20):33 –45
Gutiérrez D, Magallón J, Camarero R, Serón F (2001) Generación de vuelos virtuales: obtención de mallados más densos y detección de cauces sobre un modelo digital de terreno. XIII Congreso Internacional de Ingeniería gráfica (CIIG 01). Badajoz, Spain
Gwynfor DR (1988) Numerical simulation of forest fires. Int J Num Method Eng 25:625–633
Hargrove WW et al. (2000) Simulating fire patterns in heterogeneous landscapes. Ecol Model (135):243 –263
Henderson TC et al. (2000) Simulating accidental fires and explosions. Comput Sci Eng March/April:64–76
Inakage M (1989) A simple model of flames. Proceedings of Computer Graphics International’89. Springer, Berlin Heidelberg New York
Inakage, M (1991) Modeling laminar flames. SIGGRAPH 1991 Course Notes 27:6–10
Izbecki S, Keane R (1989) An attempt at developing a crown fire ignition model. Final Report INT-88352-COA. US Forest Service, Intermountain Fire Sciences Laboratory, Missoula, MT
Keane RE, Ryan KC, Running SW (1996) Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC. Tree Physiol (16):319 –331
Kessell SR (1976) Gradient modeling: a new approach to fire modeling and wilderness resource management. Environ Manage (1):39–48
Kourtz P, O ’Regan WG (1971) A model for a small forest fire. For Sci (17):163–169
Krajewski S, Gibbs B (1996) Understading contouring: a practical guide to spatial estimation and contouring using a computer and basics of using variograms. Gibbs Associates, Boulder, CO, USA
Losano F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. Proceedings of SIGGRAPH 2004, Computer Graphics Proceedings. ACM Press, New York, pp 457–462
Luebke D, Reddy M, Cohen J, Varshney A, Watson B, Huebner R (2003) Level of detail for 3D graphics. Morgan Kaufmann, San Francisco, CA, USA
MacKay G, Jan N (1984) Forest fires as critical phenomena. J Phys Math Gen 17:L757–L776
Magallón J, Gutiérrez D, Serón F (2000) OVDG: sistema de recreación de vuelos virtuales basado en datos topográficos reales. Aplicación a la cuenca del Ebro. XII Congreso Internacional de Ingeniería gráfica (CIIG 00) Valladolid, Spain
Martínez-Millán J (1991) CARDIN: un sistema para la simulación de la propagación de incendios forestales. Instituto Nacional de Investigación y Tecnología Agraria, MAPA. Investigación Agraria, Sistemas y Recursos Forestales, Separata N. 10. Madrid, Spain
Martínez Falero JE (1996) PIROMACOS: sistema para el control de incendios forestales. Mapping 29:51–68
Montenegro R, Plaza A, Ferragut L, Asensio MI (1997) Application of a nonlinear evolution model to fire propagation. Nonlinear analysis. Theory, methods & applications. Proc. 2nd World Congress of Nonlinear Analysis. Elsevier, Amsterdam 30(5):2873–2882
Neff M, Fiume E (1999) A visual model for blast waves and fracture. Proceedings of the 1999 conference on Graphics Interface ’99, pp 193–202, Morgan Kaufmann, San Francisco, CA, USA
O’Regan WG, Kourtz P, Nozaki S (1976) Bias in the contagion analog to fire spread. For Sci (22):61 –68
Ohtsuki T, Keyes T (1986) Biased percolation: forest fires with wind. J Phys Mathemat Gen (19):L281–L287
Paramount (1982) Star Trek II: The Wrath of Kahn. Genesis Demo, SIGGRAPH Video Review. ACM SIGGRAPH, New York
Peacock RD, Forney G, Reneke PA, Portier R, Jones WW (1993) CFAST, the consolidated model of fire and smoke transport. NIST Technical Note 1299. National Institute of Standards and Technology, USA
Perlin K (1998) Noise, hypertexture, antialiasing and gesture. Texturing and modeling: a procedural approach, 2nd edn, chap. 9. AP Professional, Boston, MA, USA
Perry C, Picard R (1994) Synthesizing flames and their spread. SIGGRAPH’94 Technical Sketches Notes
Rasmussen N, Nguyen DQ, Geiger W, Fedkiw R (2003) Smoke simulation for large scale phenomena. Proceedings of SIGGRAPH 2003, Computer Graphics Proceedings. ACM Press, New York
Reeves W (1983) Particle systems. a technique for modeling a class of fuzzy objects. Computer Graphics Proceedings, SIGGRAPH’83, 17(3):359–376
Reisner J, Smolarkiewicz P (1994) Thermally forced low froude number flow past three-dimensional obstacles. J Atmosph Sci 51(1):117–33
Richards GD (1988) Numerical simulation of forest trees. Int J Numer Methods Eng 25:625–633
Richards GD (1993) The properties of elliptical wildfire growth for time dependent fuel and meteorological conditions. Combust Sci Technol 94:357–383
Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research paper, INT-115. USDA Forest Service, Ogden, UT
Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service Technical Report INT-143
Rothermel RC, Burgan RE (1984) BEHAVE: fire behavior prediction and fuel odeling system – fuel subsystem. General technical report INT-167. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT
Rushmeier H (1994) Rendering participating media: problems and solutions from application areas. Proceedings of the Fifth Eurographics Workshop on Rendering
Rushmeier H, Hamins A, Young Choi M (1995) Volume rendering of pool fire data. IEEE Comput Graph Appl
Rzeznik MJ, O’Neill JG, McGrattan KB (1999) Smithsonian’s Dulles Center using advanced computer fire modeling techniques in performance based design. International Conference on Fire Research and Engineering (ICFRE3) Chicago, IL. Society of Fire Protection Engineers, Boston, MA
Sims K (1990) Particle animation and rendering using data parallel computation. Comput Graph 24(4):405–413
Stam J, Fiume E (1993) Turbulent wind fields for gaseous phenomena. Computer Graphics Proceedings, SIGGRAPH’93, pp 369–376
Stam J (1994) Stochastic rendering of density fields. Proceedings of Graphics Interface’94, pp 51–58
Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. Computer Graphics Proceedings, SIGGRAPH’95, pp 129–136
Stam J (1999) Stable fluids. Computer Graphics Proceedings, ACS, SIGGRAPH’99, pp 121–128
Thalmman N, Thalmman D (1987) Image synthesis. Springer, Berlin Heidelberg New York
Turner MG, Gardner RH, Romme WH (1994) Landscape disturbance models and the long-term dynamics of natural areas. Nat Areas J 14:3–11
Vasconcelos MJ, Guertin DP (1992) FIREMAP: simulation of fire growth with a geographic information system. Int J Wildland Fire 2:87–96
Wade C (1999) A new engineering tool for evaluating the fire hazard in rooms. Building Control Commission International Convention, Melbourne, Australia
Van Wagner CE (1977) Conditions for the start and spread of crown fires. Can J For Res (7):23–34
Weber RO (1991) Towards a comprehensive wildfire spread model. Int J Wildland Fire 1(4):245–248
Welch S, Rubini P (1997) Three dimensional simulation of a fire resistance furnace. Proc Fifth International Symposium on Fire Safety Science, IAFSS
Williams FA (1985) Combustion theory, 2nd edn. Benjamin Cummings, Menlo Park
Yngve GD, O’Brien JF, Hodgins JK (2000) Animating explosions. Proceedings of SIGGRAPH 2000, ACM SIGGRAPH, Computer Graphics Proceedings. ACM Press, New York, 29–36
Zeldovich YB (1985) The mathematical theory of combustion and explosions. Consultants Bureau, New York, NY, USA
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Serón, F., Gutiérrez, D., Magallón, J. et al. The Evolution of a WILDLAND Forest FIRE FRONT. Visual Comput 21, 152–169 (2005). https://doi.org/10.1007/s00371-004-0278-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-004-0278-7