Abstract
In this work we describe a decomposition scheme for polyhedra called layer-based decomposition. This decomposition can be computed in a straightforward way for any kind of polyhedron: convex or nonconvex, genus 0 or higher, etc. and presents interesting properties and applications like point-in-polyhedron inclusion test, computation of Boolean operations, or 3D location. Two methods for computing this decomposition and several of its applications are described in detail, including experimental results and comparisons with alternative approaches.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Akennine-Möller T, Haines E (2002) Real-time rendering, 2nd edn. Peters, Wellesley, MA
Bern M, Eppstein D (1995) Mesh generation and optimal triangulation. In: Computing in Euclidean geometry, 2nd edn. World Scientific, Singapore, pp 189–196
Bern M, Plassmann P (2000) Mesh generation. In: Sack JR, Urrutia J (eds) Handbook of computational geometry. North Holland, Amsterdam, pp 291–332
Feito FR (1995) Modelado de Sólidos y Álgebra de Objetos Gráficos. PhD thesis, Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada (in Spanish)
Feito FR, Torres JC (1997) Inclusion test for general polyhedra. Comput Graph 21(1):23–30
Feito FR, Rivero ML, Rueda AJ (1999) Boolean representation of general planar polygons. In: Proceedings of WSCG’99, pp 87–92
Foley JD, van Dam A, Feiner SK, Hughes JH (1996) Computer graphics: principles and practice, 2nd edn. Addison-Wesley, Reading, MA
Goodman JE, O’Rourke J (1997) Handbook of discrete and computational geometry. CRC Press, Boca Raton, FL
Rivero ML, Feito FR (2000) Boolean operations on general planar polygons. Comput Graph 24(6):881–896
Rivero ML, Feito FR (2001) Expresiones CSG para sólidos definidos por mallas de triángulos. In: Proceedings of XI Congreso Espańol de Informática Gráfica, pp 341–342 (in Spanish)
Rivero ML (2002) Algoritmos para las operaciones Booleanas en 2D y 3D, bajo un sistema de representación formal. PhD thesis, Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada (in Spanish)
Rueda AJ, Feito FR, Rivero ML (2002) A triangle-based representation for polygons and its applications. Comput Graph 26(5):805–814
Rueda AJ (2004) Representación de objetos gráficos mediante capas y sus aplicaciones. PhD thesis, Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga (in Spanish)
Schneider P, Eberly D (2002) Geometry tools for computer graphics. Morgan Kauffman, San Francisco
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rueda, A., Feito, F. & Ortega, L. Layer-based decomposition of solids and its applications. Visual Comput 21, 406–417 (2005). https://doi.org/10.1007/s00371-005-0302-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-005-0302-6