Abstract
A curve-skeleton of a 3D object is a stick-like figure or centerline representation of that object. It is used for diverse applications, including virtual colonoscopy and animation. In this paper, we introduce the concept of hierarchical curve-skeletons and describe a general and robust methodology that computes a family of increasingly detailed curve-skeletons. The algorithm is based upon computing a repulsive force field over a discretization of the 3D object and using topological characteristics of the resulting vector field, such as critical points and critical curves, to extract the curve-skeleton. We demonstrate this method on many different types of 3D objects (volumetric, polygonal and scattered point sets) and discuss various extensions of this approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abdel-Hamid, G., Yang. Y.: Multiresolution skeletonization: An electrostatic field-based approach. Proc. IEEE International Conference on Image Processing (1):949–953 (1994)
Ahuja, N., Chuang, J.-H.: Shape representation using a generalized potential field model. IEEE Trans. Pattern Analysis and Machine Intelligence 19(2):169–176 (1997)
Amenta, N., Choi, S., Kolluri, R.-K.: The power crust. Proc. of 6th ACM Symp. on Solid Modeling, pp. 249–260 (2001)
Medial Axis/Surface Transform Website http://www.cs.princeton.edu/∼min/meshclass/
Aylward, S.-R., Jomier, J., Weeks, S., Bullitt, E.: Registration and analysis of vascular images. International Journal of Computer Vision 55 (2–3): 123–138 (2003)
Aylward, S.-R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Medical Imaging 21(2): 61–75 (2002)
Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics 53:484–512 (1984)
Bloomenthal, J.: Medial based vertex deformation. Proc. ACM SIGGRAPH/Eurographics Symposium On Computer Animation, pp. 147–151 (2002)
Blum, H.: A transformation for extraction new descriptors of shape. Models for the Perception of Speech and Visual Form, MIT Press, pp. 362–380 (1967)
Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. Proc. European Conf. on Computer Vision, pp. 603–618 (2000)
Brennecke, A., Isenberg, T.: 3D Shape Matching Using Skeleton Graphs. Simulation und Visualisierung (SimVis), SCS European Publishing House, Erlangen, San Diego, pp. 299–310 (2004)
Chuang, J.-H., Tsai, C., Ko, M.-C.: Skeletonization of three-dimensional object using generalized potential field. IEEE Trans. Pattern Analysis and Machine Intelligence 22(11):1241–1251 (2000)
Dickinson, R.-R.: Interactive analysis of the topology of 4D vector fields. IBM Journal of Research and Development 35(1/2):59–66 (1991)
Fang, S., Chen, H.: Hardware accelerated voxelization. Computers and Graphics 24(3):433–442 (2000)
Gagvani, N., Silver, D.: Parameter controlled volume thinning. Graphical Models and Image Processing 61(3):149–164 (1999)
Gagvani, N., Silver, D.: Animating volumetric models. Graphical Models 63(6):443–458 (2001)
Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. Proc. IEEE Visualization, pp. 33–40 (1991)
Grigorishin, T., Yang, Y.-H.: Skeletonization: An electrostatic field-based approach. Pattern Analysis and Applications 1:163–177 (1998)
Hameiri, E., Shimshoni, I.: Estimating the principal curvatures and the Darboux frame from read 3D range data. 1st International Symposium on 3D Data Processing Visualization and Transmission, pp. 258–267 (2002)
He, T., Hong, L., Chen, D., Liang, Z.: Reliable Path for Virtual Endoscopy: Ensuring Complete Examination of Human Organs. IEEE Trans. Visualization and Computer Graphics 7(4):333–342 (2001)
Helman, J.-L., Hesselink, L.: Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications 11(3):36–46 (1991)
Kanitsar ,A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.-E.: CPR: Curved planar reformation. Proc. IEEE Visualization, pp. 37–44 (2002)
Kanitsar, A., Wegenkittl, R., Fleischmann, D., Grõller, M.-E.: Advanced curved planar reformation: flattening of vascular structures. Proc. IEEE Visualization, pp. 43–50 (2003)
Kong, T.-Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing 48(3):357–393 (1989)
Leymarie, F., Levine, M.: Simulating the grassfire transform using an active contour model. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(1):56–75 (1992)
Leymarie, F.: 3D Shape Representation via the Shock Scaffold. Ph.D. Thesis, Brown University, Providence, USA (2003)
Liu, P., Wu, F., Ma, W., Liang, R., Ouhyoung, M.: Automatic animation skeleton construction using repulsive force field. Proc. IEEE 11th Pacific Conference on Computer Graphics and Applications, pp. 409 (2003)
Ma, W., Wu, F., Ouhyoung, M.: Skeleton extraction of 3D objects with radial basis functions. Proc. Shape Modeling International, pp. 207–215 (2003)
Manzanera, A., Bernard, T., Preteux, F., Longuet, B.: Medial faces from a concise 3D thinning algorithm, Proc. IEEE International Conference on Computer Vision, pp. 337–343 (1999)
Palagyi, K., Kuba, A.: Directional 3D Thinning using 8 subiterations. Proc. Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science 1568:325–336 (1999)
Perry, A.-E., Chong, M.-S.: A description of eddying motions and flow patterns using critical-point voncepts. Ann. Review of Fluid Mechanics 19:125–155 (1987)
Pizer, S.-M., Fritsch, D.-S., Yushkevich, P.-A., Johnson, V.-E., Chaney, E.-L.: Segmentation, registration, and measurement of shape variation via image object shape. IEEE Trans. Medical Imaging 18(10):851–865 (1999)
Pizer, S., Siddiqi, K., Szekely, G., Damon, J., Zucker, S.: Multiscale medial loci and their property. International Journal of Computer Vision 55(2–3):155–179 (2003)
Schirmacher, H., Zockler, M., Stalling, D., Hege, H.: Boundary surface shrinking — A continuous approach to 3D center line extraction. Proc. Image and Multidimensional Digital Signal Processing, pp. 25–28 (1998)
Sebastian, T., Klein, P., Kimia, B.: Shock-based indexing into large shape databases. Proc. European Conference on Computer Vision 3:731–746 (2002)
3D Studio Max (3DSMax), Discreet, www.discreet.com
Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. Shape Modeling and Applications, pp. 130–138 (2003)
Svensson, S., Nystrom, I., Sanniti di Baja, G.: Curve skeletonization of surface-like objects in 3D images guided by voxel classification. Pattern Recognition Letters 23(12):1419–1426 (2002)
Tal, A., Katz, S.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. on Graphics, 22(3):954–961 (2003)
Telea, A., Vilanova, A.: A robust level-set algorithm for centerline extraction. Eurographics/IEEE/TCVG Symp. on Visualization, pp. 185–194 (2003)
Verroust, A., Lazarus, F.: Extracting skeletal curves from 3D scattered data. The Visual Computer 16(1):15–25 (2000)
Wade, L., Parent, R.-E.: Automated generation of control skeletons for use in animation. The Visual Computer 18:97–110 (2002)
Vizlab Website, Rutgers, The State University of New Jersey: http://www.caip.rutgers.edu/vizlab_group_files/vizlab.html
Wu, F.-C., Ma, W.-C., Liou, P.-C., Liang, R.-H., Ouhyoung, M.: Skeleton extraction of 3D objects with visible repulsive force. Computer Graphics Workshop 2003, Hua-Lien, Taiwan (2003)
Zhou, Y., Kaufman, A., Toga, A.-W.: Three-dimensional skeleton and centerline generation based on an approximate minimum distance field. The Visual Computer 14:303–314 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cornea, N., Silver, D., Yuan, X. et al. Computing hierarchical curve-skeletons of 3D objects. Visual Comput 21, 945–955 (2005). https://doi.org/10.1007/s00371-005-0308-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-005-0308-0