Skip to main content
Log in

Shell radiance texture functions

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The appearance of an inhomogeneous translucent material depends substantially on its volumetric variations and their effects upon subsurface scattering. For efficient rendering that accounts for both surface mesostructures and volumetric variations of such materials, shell texture functions have precomputed irradiance within a volume with respect to incoming illumination, but even with this irradiance data a fair amount of runtime computation is still required. Rather than precompute volume irradiance, we introduce the shell radiance texture function (SRTF), which relates incoming illumination more directly to outgoing surface radiance by representing a set of subsurface transport components from which surface radiance can be calculated without ray marching or runtime evaluation of dipole diffusion. Using this precomputed SRTF information, inhomogeneous objects can be rendered in real time with distant local lighting or global lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasi, P., Le Saec, B., Schlick, C.: An importance driven Monte-Carlo solution to the global illumination problem. In: Eurographics Workshop on Rendering, pp. 173–183 (1994)

  2. Cook, R.L.: Shade trees. In: Computer Graphics, pp. 223–331 (1984)

  3. Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for radiosity and subsurface scattering. In: Proceedings of Graphics Hardware, pp. 51–59 (2003)

  4. Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.Y.: Shell texture functions. In: Proceedings of ACM SIGGRAPH, pp. 343–353 (2004)

  5. Dana, K.J., Ginneken, B.V., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)

    Google Scholar 

  6. Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: Eurographics Rendering Techniques, pp. 197–201 (2003)

  7. Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.-P.: DISCO: acquisition of translucent objects. In: Proceedings of ACM SIGGRAPH, pp. 835–844 (2004)

  8. Hao, X., Baby, T., Varshney, A.: Interactive subsurface scattering for translucent meshes. In: Symposium on Interactive 3D Graphics, pp. 75–82 (2003)

  9. Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Trans. Graph. 23, 120–142 (2004)

    Google Scholar 

  10. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21(3), 576–581 (2002)

    Google Scholar 

  11. Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in scenes with participating media using photon maps. In: Proceedings of ACM SIGGRAPH, pp. 311–320 (1998)

  12. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of ACM SIGGRAPH, pp. 511–518 (2001)

  13. Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A., Lang, J., Seidel, H.P.: Interactive rendering of translucent objects. In: Proceedings of Pacific Graphics, pp. 214–224 (2002)

  14. Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Eurographics Rendering Techniques, pp. 91–100 (1996)

  15. Müller, G., Meseth, J., Sattler, M., Sarlette, R., Klein, R.: Acquisition, synthesis and rendering of bidirectional texture functions. Comput. Graph. Forum 2491), 83–109 (2005)

    Google Scholar 

  16. Müller, G., Meseth, J., Klein, R.: Fast environmental lighting for local-PCA encoded BTFs. In: Proceedings of Computer Graphics International, pp. 198–205 (2004)

  17. Ma, W-C., Chao, S-H., Tseng, Y-T., Chuang, Y-Y., Chang, C-F., Chen, B-Y., Ouhyoung, M.: Level-of-detail representation of bidirectional texture functions for real-time rendering. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 187–194 (2005)

  18. Neyret, F.: Modeling, animating, and rendering complex scenes using volumetric textures. In: IEEE Trans. Vis. Comput. Graph. 4(1), 55–70 (1998)

  19. Premože, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R., Nayar, S.: Practical rendering of multiple scattering effects in participating media. In: Eurographics Symposium on Rendering (2004)

  20. Sattler, M., Sarlette, R., Klein, R.: Effcient and realistic visualization of cloth. In: Proceedings of Eurographics Symposium on Rendering, pp. 167–177 (2003)

  21. Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 2223, 382–391 (2003)

    Google Scholar 

  22. Sloan, P.P., Liu, X., Shum, H.Y., Snyder, J.: Bi-scale radiance transfer. ACM Trans. Graph. 22(3), 370–375 (2003)

    Google Scholar 

  23. Stam, J.: Multiple scattering as a diffusion process. In: Eurographics Rendering Techniques, pp. 41–50 (1995)

  24. Wood, D., Azuma, D., Aldinger, W., Curless, B., Duchamp, T., Salesin, D., Stuetzle, W.: Surface light fields for 3D photography. In: Proceedings of ACM SIGGRAPH (2000)

  25. Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., Shum, H.-Y.: Generalized displacement mapping. In: Proceedings of Eurographics Symposium on Rendering (2004)

  26. Wang, L., Wang, X., Tong, X., Hu, S., Guo, B., Shum, H.-Y.: View-dependent displacement mapping. In: Proceedings of ACM SIGGRAPH (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Chen, Y., Tong, X. et al. Shell radiance texture functions. Visual Comput 21, 774–782 (2005). https://doi.org/10.1007/s00371-005-0320-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0320-4

Keywords

Navigation