Abstract
We present a novel visibility representation, Intersection Field (i-Field), to compute global illumination in interactive rates. The i-Field provides fast visibility and line-scene intersection queries. We factorize the direct illumination into local irradiance and visibility ratio. The latter is efficiently evaluated by querying the i-Field. The indirect illumination is simulated by photon tracing, which is also accelerated by the i-Field. By quickly detecting invalid portions, our approach can handle highly dynamic scenes, allowing light sources and scene geometries to be manipulated at interactive rates through rigid transformations and free deformations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alexander K (1996) Quasi-Monte Carlo radiosity. EGWR: 101–100
Alexander K (1997) Instant radiosity. GRAPHITE: 49–56
Bent L, Niels J (2004) Simulating photon mapping for real-time applications. EGWR: 123–131
Brian E, James R (1992) David H: An importance-driven radiosity algorithm. ACM SIGGRAPH: 273–282
Bruce W, Gun A, et al. (1997) Fitting virtual lights for non-diffuse walkthroughs. ACM SIGGRAPH: 45–48
Bruce W, George D, Steven P (1999) Interactive rendering using the render cache. EGWR 10:235–246
Bruce W, George D, Donald G (2002) Enhancing and optimizing the render cache. EGWR: 37–42
Carsten B, Ingo W, Philipp S (2003) A scalable approach to interactive global illumination. Computer Graphics Forum 22(3):621–630
Chris, B, Donald, F (1989) Illumination networks: fast realistic rendering with general reflectance functions. ACM SIGGRAPH: 23(3):89–98
Cyrille D, Francois S (1999) Space-time hierarchical radiosity for high-quality animations. EGWR: 235–246
Cyrille D, Kirill D, Karol M (2003) State of the art in global illumination for interactive applications and high-quality animations. Computer Graphics Forum 22(1):55–77
David G, Francois S, Donald G (1990) Radiosity redistribution for dynamic environments. IEEE CG&A 10(4):26–34
Francesc C, Matue S, László N (2004) Fast multipath radiosity using hierarchical subscenes. Computer Graphics Forum 23(1):43–54
Frank S, Andreas P (1999) Reducing memory requirements for interactive radiosity using movement prediction. EGWR: 225–234
Frédo D (1999) 3D visibility analytical study and applications. PhD Thesis, Université Joseph Fourier, Grenoble, France.
Gene G, Peter S, et al.(1998) The Irradiance Volume. IEEE CG&A 18(2):32–43
George D, Francois S (1997) Interactive update of global illumination using a line-space hierarchy. ACM SIGGRAPH: 57–64
Gonzalo B, Mateu S (1996) The multi-frame lighting method: a Monte Carlo based solution for radiosity in dynamic environments. EGWR: 185–194
Gonzalo B, Pueyo X (2001) Animating radiosity environments through the multi-frame lighting method. J. Visual. Comp. Animat. 12(2):93–106
Gregory W, Maryann S (1999) The holodeck ray cache: an interactive rendering system for global illumination in nondiffuse environments. ACM TOG 18(4):361–368
Hector Y, Sumanita P, Donald PG (2001) Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM TOG 20(1):39–65
Ingo W, Philipp S, et al. (2001) Interactive rendering with coherent ray tracing, Computer Graphics Forum 20(3):153–164
Jeffry N, Julie D, Holly R (1996) Implementation and analysis of an image-based global illumination framework for animated environments. IEEE Trans. on Visualization and Computer Graphics 2(4):283–298
Jensen H (1996) Global illumination using photon maps. EGWR: 21–30
Johannes G, Ingo W, Philipp S (2004) Realtime caustics using distributed photon mapping. EGWR: 109–121
Karol M, Takehiro T, et al. (2001) Perception-guided global illumination solution for animation rendering. ACM SIGGRAPH: 221–230
Kavita B, Julie D, Seth T (1999) Radiance interpolants for accelerated bounded-error ray tracing. ACM TOG 18(3):213–256
Kirill D, Stefan B, et al. (2002) Interactive global illumination using selective photon tracing. EGWR: 25–36
Larry A, Pat H (1993) A hierarchical illumination algorithm for surfaces with glossy reflection. GRAPHITE: 155–162
Laszlo K, Werner P(1998) Global ray-bundle tracing with hardware acceleration. EGWR: 247–258
Laszlo K (1999) Stochastic iteration for non-diffuse global illumination. Computer Graphics Forum 18(3):233–244
Laszlo K, György A, Balazs B (2003) Global illumination animation with random radiance representation. EGWR: 64–73
Marc S, Annete S, et al. (2000) Efficient glossy global illumination with interactive viewing. Computer Graphics Forum 19(1):13–25
Mark S, Jörg H, et al. (2000) Walkthroughs with corrective texturing. EGWR: 377–390
Martin I, Pueyo X, Tost D (2003) Frame-to-Frame coherent animation with two-Pass radiosity. IEEE Trans. on Visualization and Computer Graphics Jan.: 70–84
Maryann S, Carlo S (2000) Tapestry: a dynamic mesh-based display representation for interactive rendering. EGWR: 329–340
Parag T, Fabio P, et al. (2002) Interactive global illumination in dynamic scenes. GRAPHITE: 537–546
Per C, Dana B (2004) An irradiance atlas for global illumination in complex production scenes. EGWR: 132–141
Pfister H, Zwicker M, et al.(2000) Surfels: surface elements as rendering primitives. ACM SIGGRAPH: 335–342
Pueyo X, Tost D, et al. (1997) Radiosity for dynamic environments. The Journal of Visualization and Computer Animation 8(4):221–231
Rafal M, Sumanta P, Karol M (2002) Cube-map data structure for interactive global illumination computation in dynamic diffuse environments. ICCVG: 25–29
Rui B, Kenneth H, et al. (1999) Increased photorealism for interactive architectural walkthroughs. ACM Symposium on Interactive 3D Graphics: 183–190
Sbert M, Pueyo X (1996) Global multipath Monte Carlo algorithms for radiosity. The Visual Computer 12(2):47–57
Sbert M, Szécsi L, Laszlo S (2004) Real-time light animation. Computer Graphic Forum 23(3):291–299
Seth T, Kavita B, Julie D (1996) Conservative radiance interpolants for ray tracing. EGWR: 257–268
Shenchang C (1990) Incremental radiosity: an extension of progressive radiosity to an interactive image synthesis system. GRAPHITE: 135–144
Shenchang C, Holly R, et al. (1991) A progressive multi-pass method for global illumination. GRAPHITE: 165–174
Steve P, William M, Perter-Pike S (1999) Interactive ray tracing. ACM Symposium on Interactive 3D Graphics: 119–126
Timothy P, Craig D, et al. (2003) Photon mapping on programmable graphics hardware. SIGGRAPH/EUROGRAPHICS Workshop On Graphics Hardware: 41–50
Tommer, L, Olga, S, Daniel, C (2003) Ray space factorization for from-region visibility. ACM SIGGRAPH 22(3):595–604
Valdimir V, Karol M, et al. (2000) Using the visual differences predictor to improve performance of progressive global illumination computation. ACM TOG 19(2):122–161
William S, James F, et al. (2004) Perceptual illumination components: a new approach to efficient, high quality global illumination rendering. ACM TOG 23(3):742–749
William M, Leonard M, Gary B (1997) Post-rendering 3D warping. Symposium on Interactive 3D Graphics: 7–16
Wolfgang S, Rui B (1997) Interactive rendering of globally illuminated glossy scenes. EGWR: 93–102
Xavier G, George D (2001) Incremental Updates for Rapid Glossy Global Illumination. Computer Graphics Forum 20(3):268–277
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ren, Z., Hua, W., Chen, L. et al. Intersection fields for interactive global illumination. Visual Comput 21, 569–578 (2005). https://doi.org/10.1007/s00371-005-0329-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-005-0329-8