Skip to main content
Log in

Shape complexity

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The complexity of 3D shapes that are represented in digital form and processed in CAD/CAM/CAE, entertainment, biomedical, and other applications has increased considerably. Much research was focused on coping with or on reducing shape complexity. However, what exactly is shape complexity? We discuss several complexity measures and the corresponding complexity reduction techniques. Algebraic complexity measures the degree of polynomials needed to represent the shape exactly in its implicit or parametric form. Topological complexity measures the number of handles and components or the existence of non-manifold singularities, non-regularized components, holes or self-intersections. Morphological complexity measures smoothness and feature size. Combinatorial complexity measures the vertex count in polygonal meshes. Representational complexity measures the footprint and ease-of-use of a data structure, or the storage size of a compressed model. The latter three vary as a function of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandroff, P.: Elementary Concepts of Topology. Dover Publications, New York (1961)

  2. Andujar, C., Brunet, P., Chica, A., Navazo, I., Rossignac, J., Vinacua, A.: Optimal iso-surfaces. CAD Conference, 2004. J Comput Aided Des Appl 1(1–4), 503–511 (2004)

    Google Scholar 

  3. Attene, M., Falcidieno, B., Spagnuolo, M., Rossignac, J.: SwingWrapper: retiling triangle meshes for better EdgeBreaker compression. Genova CNR-IMA Tech. Rep. No. 14/2001. ACM Trans Graph 22(4), 982–996 (2003)

  4. Banerjee, R., Rossignac, J.: Topologically exact evaluation of polyhedra defined in CSG with loose primitives. Comput Graph Forum 15(4), 205–217 (1996)

    Google Scholar 

  5. Biermann, H., Kristjansson, D., Zorin, D.: Approximate Boolean operations on free-form solids. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 185–194, August (2001)

  6. Brun, J.M., Evrard, M.: EUCLID as a CAD/CAM system used in the second CAM-I benchmark. Proc. CAM-I’s 3rd Geometric Modeling Seminar, P-85-MM01, Nashville, Tenn., pp. 3-81–3-124 (1985)

  7. Brown, C.M., Requicha, A.A.G., Voelcker, H.B.: Geometric modelling systems for mechanical design and manufacturing. ACM/CSC-ER, 770–778 (1978)

  8. Coors, V., Rossignac, J.: Delphi encoding: improving Edgebreaker by geometry based connectivity prediction. Visual Computer 20, 1–14 (2004)

    Google Scholar 

  9. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Proc. Eurographics’98, vol. 17(2), pp. 167–174, June (1998)

    Google Scholar 

  10. Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans Graph 9(2), 160–169 (1990)

    Google Scholar 

  11. van Emmerik, M., Rappoport, A., Rossignac, J.: Simplifying interactive design of solid models: a hypertext approach. Visual Computer 9(5), 239–254 (1993)

    Google Scholar 

  12. Farin, G., Hoshek, J., Kim, M.S. (eds.): Handbook of Computer Aided Geometric Design. North Holland, Amsterdam (2002)

  13. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. Proc. ACM SIGGRAPH’97, pp. 209–216 (1997)

  14. Garland, M.: QSlim 2.0 [Computer Software]. University of Illinois at Urbana-Champaign, UIUC Computer Graphics Lab (1999) http://graphics.cs.uiuc.edu/∼garland/software/qslim.html

  15. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. CRC Press, London (2004)

  16. Guskov, I., Vidimce, K., Sweldens, W., Schroeder, P.: Normal meshes. In: Siggraph’2000 Conference Proceedings, pp. 95–102 (2000)

  17. Hoppe, H., DeRose, T. Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Computer Graphics: Siggraph’93 Proceedings, pp. 19–25 (1993)

  18. King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs. 11th Canadian Conference on Computational Geometry (CCCG99), pp. 146–149, Vancouver, CA, August 15–18 (1999)

  19. Kormos, J.G.: The SDRC GEOMOD - interactive solid modeling program. Proc. CAM-I’s 3rd Geometric Modeling Seminar, P-85-MM01, Nashville, Tenn., pp. 3-125–3-167, March (1985)

  20. Kriezis, G.A., Patrikalakis, N.M., Wolter, F.-E.: Topological and differential equation methods for surface intersections. J Comput Aided Des 24(1), 41–55 (1992)

    Google Scholar 

  21. Khodakovsky, A., Schroeder, P., Sweldens, W.: Progressive geometry compression. In: SIGGRAPH 2000, Computer Graphics Proceedings, 271–278 (2000)

  22. Lee, A.W.F., Sweldens, W., Schroeder, P., Cowsar, L., Dobkin, D.: MAPS: multiresolution adaptive parametrization of surfaces. In: SIGGRAPH’98 Conference Proceedings, pp. 95–104 (1998)

  23. Liepa, P.: Filling holes in meshes. Proceedings Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 200–205 (2003)

  24. Llamas, I., Kim, B.M., Gargus, J., Rossignac, J., Shaw, C.D.: Twister: a space-warp operator for the two-handed editing of 3D shapes. ACM Trans Graph (TOG), Proc. ACM SIGGRAPH 22(3), 663–668 (2000)

    Google Scholar 

  25. Loop, C.: Smooth spline surfaces over irregular meshes. Comput Graph 28, 303–310 (1994)

    Google Scholar 

  26. Lazard, S., Peñaranda, L., Petitjean, S.: Intersecting quadrics: an efficient and exact implementation. Proceedings 20th Annual Symposium on Computational Geometry, pp. 419–428 (2004)

  27. Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., Hubner, R.: Levels of Detail for 3D Graphics. Morgan Kaufmann, San Francisco (2002)

  28. Mantyla, M.: Boolean operations of 2-manifold through vertex neighborhood classification. ACM Trans Graph 5(1), 1–29 (1986)

    Google Scholar 

  29. Mantyla, M.: An introduction to solid modeling. Computer Science Press (1988)

  30. Miller, J., Goldman, R.: Geometric algorithms for detecting and calculating all conic sections in the intersection of any two natural quadric surfaces. Graph Models Image Process 57(1), 55–66 (1995)

    Google Scholar 

  31. Murali, T.M., Funkhouser, T.: Consistent solid and boundary representations from arbitrary polygonal data. Symposium on Interactive 3D Graphics, pp. 155–162, April (1997)

  32. Okino, N., Kakazu, Y., Kubo, H.: TIPS-1: technical information processing system for computer-aided design. In: Hatvany, J. (ed.) Drawing and Manufacturing, Computer Languages for Numerical Control, pp. 141–150. North-Holland, Amsterdam (1973)

  33. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modelling: concepts, implementation and applications. Visual Computer 11(8), 429–446 (1995)

    Google Scholar 

  34. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: surface elements as rendering primitives. Proceedings of 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342, July (2000)

  35. Requicha, A.: Representation of rigid solids: theory, methods, and systems. ACM Computing Surveys 12(4), 437–464 (1980)

  36. Requicha, A., Voelcker, H.: Boolean operations in solid modeling: boundary evaluation and merging algorithms. Proc. IEEE 73(1), 30–44 (1985)

    Google Scholar 

  37. Rossignac, J., Borrel, P.: Multi-resolution 3D approximations for rendering complex scenes. In: Geometric Modeling in Computer Graphics. Springer, Berlin Heidelberg New York (1993)

  38. Cameron, S., Rossignac, J.: Relationship between S-bounds and active zones in constructive solid geometry. Proceedings of Theory and Practice of Geometric Modeling, pp. 369–348, Blaubeuren, Germany, October (1988)

  39. Rossignac, J., Cardoze, D.: Matchmaker: manifold breps for non-manifold r-sets. Proceedings of ACM Symposium on Solid Modeling, pp. 31–41, June (1999)

  40. Rossignac, J., O’Connor, M.: SGC: a dimension-independent model for pointsets with internal structures and incomplete boundaries. In: Wosny, M., Turner, J., Preiss, K. (eds.) Geometric Modeling for Product Engineering, pp. 145–180. North-Holland, Amsterdam (1989)

  41. Rossignac, J., Requicha, A.: Constructive non-regularized geometry. J Comput Aided Des 23(1), 21–32 (1991)

    Google Scholar 

  42. Ronfard, R., Rossignac, J.: Full range approximation of triangulated polyhedra. Proc. Eurographics’96, Vol. 15(3), pp. 67–76 (1996)

    Google Scholar 

  43. Rossignac, J.: Surface simplification and 3D geometry compression. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, London (2004)

  44. Rossignac, J.: Education-driven research in CAD. Comput Aided Des (CAD) 36(14), 1461–1469 (2004)

    Google Scholar 

  45. Rossignac, J.: Blending and offsetting solid models. Ph.D. thesis, University of Rochester, NY (1985)

  46. Rossignac, J.: Through the cracks of the solid modeling milestone. In: Coquillart, Strasser, Stucki (eds.) From Object Modelling to Advanced Visual Communication, pp. 1–75. Springer, Berlin Heidelberg New York (1994)

  47. Rossignac, J.: CSG formulations for identifying and for trimming faces of CSG models. In: Woodwark, J. (ed.) CSG’96, Set-theoretic solid modeling techniques and applications. Information Geometers, Bath, UK (1996)

  48. Rossignac, J.: Structured Topological Complexes: A Feature-Based API for Non-manifold Topologies. In: Hoffman, C., Bronsvort, W. (eds.), Proceedings of the ACM Symposium on Solid Modeling, pp. 1–9. ACM Press, New York (1997)

  49. Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans Visual Comput Graph 5(1), 47–61 (1999)

    Google Scholar 

  50. Rossignac, J., Szymczak, A.: Wrap&Zip decompression of the connectivity of triangle meshes compressed with Edgebreaker. Computational Geometry, Theory and Applications 14(1/3), 119–135 (1999)

  51. Rossignac, J., Voelcker, H.: Active zones in CSG for accelerating boundary evaluation, redundancy elimination, interference detection and shading algorithms. ACM Trans Graph 8, 51–87 (1989)

    Google Scholar 

  52. Rossignac, J., Safonova, A., Szymczak, A.: 3D compression made simple: Edgebreaker on a Corner Table. Shape Modeling International Conference, pp. 278–283, Genoa, Italy, May (2001)

  53. Rossignac, J., Safonova, A., Szymczak, A.: Edgebreaker on a Corner Table: a simple technique for representing and compressing triangulated surfaces. In: Farin, G., Hagen, H., Hamann, B. (eds.) Hierarchical and Geometrical Methods in Scientific Visualization, pp. 41–50. Springer, Berlin Heidelberg New York (2003)

  54. Salomon, D.: Data Compression: The Complete Reference. Springer, Berlin Heidelberg New York (2000)

  55. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press (1999)

  56. Szymczak, A., King, D., Rossignac, J.: n Edgebreaker-based efficient compression scheme for connectivity of regular meshes. Journal of Computational Geometry: Theory and Applications (2000)

  57. Schmitt, B., Pasko, G., Pasko, A., Kunii, T.L.: Modelling and representing surfaces: rendering trimmed implicit surfaces and curves. Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (2004)

  58. Szymczak, A., Rossignac, J., King, D.: Piecewise regular meshes: construction and compression, graphics models. Special Issue on Processing of Large Polygonal Meshes 64, 183–198 (2002)

    Google Scholar 

  59. Szymczak, A., Vanderhyde, J.: Extraction of topologically simple isosurfaces from volume datasets. Proc. IEEE Visualization, pp. 67–74 (2003)

  60. Dey, T., Goswami, S.: Provable surface reconstruction from noisy samples. Proceedings of the Twentieth Annual Symposium on Computational Geometry (2004)

  61. Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Trans Graph 17(2), 84–115 (1998)

    Google Scholar 

  62. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. Proceedings of the 5th International Conference on Computer Vision, pp. 902 (1995)

  63. Taubin, G.: A signal processing approach to fair surface design. Proceedings of the 22nd Annual Conference on Computer graphics and Interactive Techniques, pp. 351–358, September (1995)

  64. Tilove, R.: Set membership classification: a unified approach to geometric intersection problems. IEEE Trans. Comput C-29(10), 874–883, October (1980)

    Google Scholar 

  65. Tilove, R.:A null-object detection algorithm for constructive solid geometry. Commun ACM 27(7), 684–694 (1984)

    Google Scholar 

  66. Touma, C., Gotsman, C.: Triangle mesh compression. Graphics Interface 1998, Vancouver, BC, Canada, pp. 26–34 (1998) [See http://www.informatik.uni-trier.de/∼ley/db/conf/graphicsinterface/graphicsinterface1998.html]

  67. Turk, G.: Retiling polygonal surfaces. Proc. ACM Siggraph’92, pp. 55–64, July (1992)

  68. Warren, J., Weimer, H.: Subdivision methods for geometric design: a constructive approach. Morgan Kaufmann, San Francisco (2002)

  69. Williams, J., Rossignac, J.: Tightening: curvature-limiting morphological simplification. GVU Tech Report GIT-GVU-04-27 (2004)

  70. Williams, J., Rossignac, J.: Mason: Morphological simplification. Graphical Models 67(4), 285–303 (2005)

    Google Scholar 

  71. Zorin, D., Schroeder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. Computer Graphics 30, 189–192 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossignac, J. Shape complexity. Visual Comput 21, 985–996 (2005). https://doi.org/10.1007/s00371-005-0362-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0362-7

Keywords

Navigation