Abstract
In this paper, we introduce a versatile and robust method for analyzing the feature space associated with a given mesh surface. The method is based on the mean-shift operator, which was shown to be successful in image and video processing. Its strength lies in the fact that it works in a single joint space of geometry and attributes called the feature-space. The mean-shift procedure works as a gradient ascend finding maxima of an estimated probability density function in feature-space. Our method for using the mean-shift technique on surfaces solves several difficulties. First, meshes as opposed to images do not present a regular and uniform sampling of domain. Second, on surface meshes the shifting procedure must be constrained to stay on the surface and preserve geodesic distances. We define a special local geodesic parameterization scheme, and use it to generalize the mean-shift procedure to unstructured surface meshes. Our method can support piecewise linear attribute definitions as well as piecewise constant attributes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Arabie, R., Hubert, L., DeSoete, G. (eds.): Clustering and Classification. World Scientific Publishers, River Edge, NJ (1996)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)
Collins, R.: Mean-shift blob tracking through scale space. In: Computer Vision and Pattern Recognition (CVPR’03). IEEE (2003)
Comaniciu, D., Meer, P.: Mean shift: a robust approach towards feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Computer Vision and Pattern Recognition (CVPR’00). IEEE (2000)
DeMenthon, D.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. In: Statistical Methods in Video Processing Workshop, SMVP 2002, Copenhagen, Denmark (2002)
DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. In: ACM Computer Graphics, Proc. SIGGRAPH 1998, pp. 85–94 (1998)
Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Proceedings of the 18th Annual ACM Symposium on Computational Geometry, pp. 244–253 (2002)
Faugeras, O.D., Hebert, M.: The representation, recognition, and positioning of 3-d shapes from range data. In: T. Kanade (ed.) Three-Dimensional Machine Vision, pp. 301–353. Kluwer Academic Publishers, Dordrecht (1987)
Floater, M.: Parametrization and smooth approximation of surface triangulations. Comput Aided Geomet Des 14, 231–250 (1995)
Floater, M.: Mean value coordinates. Comput. Aided. Geomet. Des. 20, 19–27 (2003)
Floater, M.S., Hormann, K.: Surface parametrization: a tutorial and survey. In: N. Dodgson, M.S. Floater, M. Sabin (eds.) Advances on Multiresolution in Geometric Modelling. Springer, Berlin Heidelberg New York (2005)
Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inform. Theory IT-21, 32–40 (1975)
Garland, M., Willmott, A., Heckbert, P.: Hierarchical face clustering on polygonal surfaces. In: Proc. ACM Symposium on Interactive 3D Graphics (2001)
Gordon, A.D.: Hierarchical classification. In: R. Arabie, L. Hubert, G. DeSoete (eds.) Clustering and Classification, pp. 65–105. World Scientific Publishers, River Edge, NJ (1996)
Guralnik, V., Karypis, G.: A scalable algorithm for clustering protein sequences. In: Workshop on Data Mining in Bioinformatics (2001), pp. 73–80 (2001)
Inoue, K., Takayuki, I., Atsushi, Y., Tomotake, F., Kenji, S.: Face clustering of a large-scale cad model for surface mesh generation. Computer Aided Design 33(3) (2001). The 8th International Meshing Roundtable Special Issue: Advances in Mesh Generation
Kalvin, A.D., Taylor, R.H.: Superfaces: polygonal mesh simplification with bounded error. IEEE Comput. Graph. Appl. 16(3) (1996)
Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph (Proceedings SIGGRAPH 2003) 22(3), 954–961 (2003)
Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. National Acad. Sci. 95(15), 8431–8435 (1998)
Koenderink, J., van Doorn, A.: Surface shape and curvature scales. Image Vision Comput. 10, 557–565 (1992)
Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23(3), 861–869 (2004)
Levy, B., Mallet, J.L.: Non-distorted texture mapping for sheared triangulated meshes. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 343–352 (1998)
Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: ACM Computer Graphics, Proc. SIGGRAPH 2002, pp. 362–371 (2002)
Mangan, A.P., Whitaker, R.T.: Surface segmentation using morphological watersheds. In: Proc. IEEE Visualization 1998 Late Breaking Hot Topics (1998)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)
Pulla, S.: Improved Curvature Estimation for Watershed of 3-Dimensional Meshes. M.S. Thesis, Arizona State University, April 2001
Roberts, S.J.: Parametric and non-parametric unsupervised cluster analysis. Patt Recog 30, 327–345 (1997)
Sander, P., Wood, Z., Gortler, S., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: Proc. Eurographics Symposium on Geometry Processing 2003, pp. 146–155 (2003)
Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)
Shamir, A.: Feature-space analysis of unstructured meshes. In: Proceedings IEEE Visualization 2003, pp. 185–192. Seattle, Washington (2003)
Shapira, L., Shamir, A.: Local geodesic parametrization: an ant’s perspective. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Springer, Berlin, Heidelberg New York (2005)
Sheffer, A.: Spanning tree seams for reducing parameterization distortion of triangulated surfaces. In: Proceedings of the International Conference on Shape Modeling and Applications 2002 (SMI’02), pp. 61–66 (2002)
Sheffer, A., Hart, J.: Seamster: Inconspicuous low-distortion texture seam layout. In: Proc. IEEE Visualization 2002, pp. 291–298 (2002)
Sheffer, A., de Sturler, E.: Surface parameterization for meshing by triangulation flattening. In: Proceedings of the 9th International Meshing Roundtable, pp. 161–172 (2000)
Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Computer Graphics Forum 21(3). Proceedings Eurographics (2002)
Sorkine, O., Cohen-Or, D., Goldenthal, R., Lischinski, D.: Bounded-distortion piecewise mesh parameterization. In: Proc. IEEE Visualization 2002 (2002)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. of the Sixth International Conference of Computer Vision, pp. 839–846 (1998)
Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–583 (2004)
Yu, B.: Recognition of freehand sketches using mean shift. In: Proceedings of the 8th International Conference on Intelligent User Interfaces, pp. 204–210. ACM Press, New York (2003)
Zhuang, X., Huang, Y., Palaniappan, K., Zhao, Y.: Gaussian mixture density modeling: Decomposition and applications. IEEE Trans. Image Processing 5(9), 1293–1302 (1996)
Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Visual. Comput. Graph. 8(2), 198–207 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shamir, A., Shapira, L. & Cohen-Or, D. Mesh analysis using geodesic mean-shift. Visual Comput 22, 99–108 (2006). https://doi.org/10.1007/s00371-006-0370-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-006-0370-2