Skip to main content

Advertisement

Log in

Mesh analysis using geodesic mean-shift

  • Special issue paper
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we introduce a versatile and robust method for analyzing the feature space associated with a given mesh surface. The method is based on the mean-shift operator, which was shown to be successful in image and video processing. Its strength lies in the fact that it works in a single joint space of geometry and attributes called the feature-space. The mean-shift procedure works as a gradient ascend finding maxima of an estimated probability density function in feature-space. Our method for using the mean-shift technique on surfaces solves several difficulties. First, meshes as opposed to images do not present a regular and uniform sampling of domain. Second, on surface meshes the shifting procedure must be constrained to stay on the surface and preserve geodesic distances. We define a special local geodesic parameterization scheme, and use it to generalize the mean-shift procedure to unstructured surface meshes. Our method can support piecewise linear attribute definitions as well as piecewise constant attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Arabie, R., Hubert, L., DeSoete, G. (eds.): Clustering and Classification. World Scientific Publishers, River Edge, NJ (1996)

  2. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Google Scholar 

  3. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)

    Google Scholar 

  4. Collins, R.: Mean-shift blob tracking through scale space. In: Computer Vision and Pattern Recognition (CVPR’03). IEEE (2003)

  5. Comaniciu, D., Meer, P.: Mean shift: a robust approach towards feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Google Scholar 

  6. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Computer Vision and Pattern Recognition (CVPR’00). IEEE (2000)

  7. DeMenthon, D.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. In: Statistical Methods in Video Processing Workshop, SMVP 2002, Copenhagen, Denmark (2002)

  8. DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. In: ACM Computer Graphics, Proc. SIGGRAPH 1998, pp. 85–94 (1998)

  9. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Proceedings of the 18th Annual ACM Symposium on Computational Geometry, pp. 244–253 (2002)

  10. Faugeras, O.D., Hebert, M.: The representation, recognition, and positioning of 3-d shapes from range data. In: T. Kanade (ed.) Three-Dimensional Machine Vision, pp. 301–353. Kluwer Academic Publishers, Dordrecht (1987)

  11. Floater, M.: Parametrization and smooth approximation of surface triangulations. Comput Aided Geomet Des 14, 231–250 (1995)

    Google Scholar 

  12. Floater, M.: Mean value coordinates. Comput. Aided. Geomet. Des. 20, 19–27 (2003)

    Google Scholar 

  13. Floater, M.S., Hormann, K.: Surface parametrization: a tutorial and survey. In: N. Dodgson, M.S. Floater, M. Sabin (eds.) Advances on Multiresolution in Geometric Modelling. Springer, Berlin Heidelberg New York (2005)

  14. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inform. Theory IT-21, 32–40 (1975)

    Google Scholar 

  15. Garland, M., Willmott, A., Heckbert, P.: Hierarchical face clustering on polygonal surfaces. In: Proc. ACM Symposium on Interactive 3D Graphics (2001)

  16. Gordon, A.D.: Hierarchical classification. In: R. Arabie, L. Hubert, G. DeSoete (eds.) Clustering and Classification, pp. 65–105. World Scientific Publishers, River Edge, NJ (1996)

  17. Guralnik, V., Karypis, G.: A scalable algorithm for clustering protein sequences. In: Workshop on Data Mining in Bioinformatics (2001), pp. 73–80 (2001)

  18. Inoue, K., Takayuki, I., Atsushi, Y., Tomotake, F., Kenji, S.: Face clustering of a large-scale cad model for surface mesh generation. Computer Aided Design 33(3) (2001). The 8th International Meshing Roundtable Special Issue: Advances in Mesh Generation

    Google Scholar 

  19. Kalvin, A.D., Taylor, R.H.: Superfaces: polygonal mesh simplification with bounded error. IEEE Comput. Graph. Appl. 16(3) (1996)

  20. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph (Proceedings SIGGRAPH 2003) 22(3), 954–961 (2003)

    Google Scholar 

  21. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. National Acad. Sci. 95(15), 8431–8435 (1998)

  22. Koenderink, J., van Doorn, A.: Surface shape and curvature scales. Image Vision Comput. 10, 557–565 (1992)

    Google Scholar 

  23. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23(3), 861–869 (2004)

    Google Scholar 

  24. Levy, B., Mallet, J.L.: Non-distorted texture mapping for sheared triangulated meshes. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 343–352 (1998)

  25. Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: ACM Computer Graphics, Proc. SIGGRAPH 2002, pp. 362–371 (2002)

  26. Mangan, A.P., Whitaker, R.T.: Surface segmentation using morphological watersheds. In: Proc. IEEE Visualization 1998 Late Breaking Hot Topics (1998)

  27. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Google Scholar 

  28. Pulla, S.: Improved Curvature Estimation for Watershed of 3-Dimensional Meshes. M.S. Thesis, Arizona State University, April 2001

  29. Roberts, S.J.: Parametric and non-parametric unsupervised cluster analysis. Patt Recog 30, 327–345 (1997)

    Google Scholar 

  30. Sander, P., Wood, Z., Gortler, S., Snyder, J., Hoppe, H.: Multi-chart geometry images. In: Proc. Eurographics Symposium on Geometry Processing 2003, pp. 146–155 (2003)

  31. Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)

    Google Scholar 

  32. Shamir, A.: Feature-space analysis of unstructured meshes. In: Proceedings IEEE Visualization 2003, pp. 185–192. Seattle, Washington (2003)

  33. Shapira, L., Shamir, A.: Local geodesic parametrization: an ant’s perspective. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Springer, Berlin, Heidelberg New York (2005)

  34. Sheffer, A.: Spanning tree seams for reducing parameterization distortion of triangulated surfaces. In: Proceedings of the International Conference on Shape Modeling and Applications 2002 (SMI’02), pp. 61–66 (2002)

  35. Sheffer, A., Hart, J.: Seamster: Inconspicuous low-distortion texture seam layout. In: Proc. IEEE Visualization 2002, pp. 291–298 (2002)

  36. Sheffer, A., de Sturler, E.: Surface parameterization for meshing by triangulation flattening. In: Proceedings of the 9th International Meshing Roundtable, pp. 161–172 (2000)

  37. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Computer Graphics Forum 21(3). Proceedings Eurographics (2002)

  38. Sorkine, O., Cohen-Or, D., Goldenthal, R., Lischinski, D.: Bounded-distortion piecewise mesh parameterization. In: Proc. IEEE Visualization 2002 (2002)

  39. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. of the Sixth International Conference of Computer Vision, pp. 839–846 (1998)

  40. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–583 (2004)

    Google Scholar 

  41. Yu, B.: Recognition of freehand sketches using mean shift. In: Proceedings of the 8th International Conference on Intelligent User Interfaces, pp. 204–210. ACM Press, New York (2003)

  42. Zhuang, X., Huang, Y., Palaniappan, K., Zhao, Y.: Gaussian mixture density modeling: Decomposition and applications. IEEE Trans. Image Processing 5(9), 1293–1302 (1996)

    Google Scholar 

  43. Zigelman, G., Kimmel, R., Kiryati, N.: Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Visual. Comput. Graph. 8(2), 198–207 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Shamir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamir, A., Shapira, L. & Cohen-Or, D. Mesh analysis using geodesic mean-shift. Visual Comput 22, 99–108 (2006). https://doi.org/10.1007/s00371-006-0370-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0370-2

Keywords