Skip to main content

Advertisement

Log in

Mean shift denoising of point-sampled surfaces

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an anisotropic denoising/smoothing algorithm for point-sampled surfaces. Motivated by the impressive results of mean shift filtering on image denoising, we extend the concept to 3D surface smoothing by taking the vertex normal and the curvature as the range component and the vertex position as the spatial component. Then the local mode of each vertex on point-based surfaces is computed by a 3D mean shift procedure dependent on local neighborhoods that are adaptively obtained by a kdtree data structure. Clustering pieces of point-based surfaces of similar local mode provides a meaningful model segmentation. Based on the adaptively clustered neighbors, we finally apply a trilateral point filtering scheme that adjusts the position of sample points along their normal directions to successfully reduce noise from point-sampled surfaces while preserving geometric features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alexa, M.: Wiener filtering of meshes. In: Wyvill, G. (ed) Proceedings of the Shape Modeling International 2002, pp. 51–57, IEEE Computer Society, Banff, Canada (2002)

  2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S.: Point set surfaces. Proceedings of the Conference on Visualization ’01, pp. 21–28, IEEE Computer Society, San Diego, CA (2001)

  3. Amenta, N., Kil, Y.: Defining Point set surfaces. ACM Trans. Graph.. 23(3), 264–270 (2004)

    Google Scholar 

  4. Bajaj, C., Xu, G.: Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph.. 22(1), 4–32 (2003)

    Google Scholar 

  5. Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Video Computing 22(1), 73–81 (2004)

    Google Scholar 

  6. Carr, J., Beatson, R., Cherrie, J., Mitchell, T.: Reconstruction and representation of 3D objects with radial basis functions. Proceedings of ACM SIGGRAPH 2001, pp. 67–76 (2001)

  7. Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. Proceedings of Eurographics 2003, pp. 186–196, Aire-la-Ville, Switzerland (2003)

  8. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level vision. Proceedings of 16th International Conference on Pattern Recognition, pp. 150–155 (2002)

  9. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Ertl, T., Hamann, B., Varshney, A. (eds) Proceedings of IEEE Visualization 2000, pp. 397–405, Salt Lake City, UT (2000)

  10. Clarenz, U., Rumpf, M., Telea, A: Fairing of point based surfaces. Proceedings of Computer Graphics International, June 16–19, 2004 Crete, Greece, pp. 600–603 (2004)

  11. Comaniciu, D., Meer, P.: Mean shift analysis and applications. IEEE International Conference on Computer Vision, September 20–27, 1999, Kerkyra, Greece, pp. 1197–1203 (1999)

  12. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Patt. Anal. Mach. Intell. 24(5), 603–619 (2002)

    Google Scholar 

  13. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. IEEE Conference on Computer Vision and Pattern Recognition, pp. 142–151, Hilton Head Island, SC, (2000)

  14. Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of SIGGRAPH99, pp. 317–324, Los Angeles, CA (1999)

  15. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. Proceedings of SIGGRAPH03, pp. 950–953, San Diego, CA (2003)

  16. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Proceedings of ACM SIGGRAPH 92, pp.71–78, Chicago (1992)

  17. Hu, G., Peng, Q.: Anisotropic denoising of point-sampled models (in Chinese). J. Software 15, 215–221 (2004)

    Google Scholar 

  18. Hu, G., Peng, Q.: Bilateral estimation of normal on point-sampled models. International Conference on Computational Science and Its Applications, May 9–12, Singapore, pp. 758–768 (2005)

  19. Hu, G., Peng, Q., Forrest, A.: Robust mesh smoothing. J Comput. Sci. Technol. 19(4), 521–528 (2004)

    Google Scholar 

  20. Jones, T., Durand, F., Desbrun, M. Non-iterative, feature preserving mesh smoothing. Proceedings of SIGGRAPH03, pp. 943–949, San Diego, CA (2003)

  21. Lange, C., Polthier, K. Anisotropic fairing of point sets. Comput. Aid Geomet. Des. 22(7), 680–692 (2005)

    Google Scholar 

  22. Pauly, M., Gross, M.: Spectral processing of point-sampled geometry. Proceedings of ACM SIGGRAPH 2001, pp. 379–386 (2001)

  23. Pauly, M., Gross, M., Kobblet, L.: Efficient Simplification of Point-Sampled Geometry. IEEE Visualization 02, pp. 163–170, IEEE Computer Society (2002)

  24. Pauly, M., Keiser, R., Kobblet, L., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. 22(3), 641–650 (2003)

    Google Scholar 

  25. Peng, J., Strela, V., Zorin, D.: A simple algorithm for surface denoising. IEEE Visualization 2001, pp. 107–112, San Diego, CA (2001)

  26. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exper. Math. 2(1), 15–36 (1993)

    Google Scholar 

  27. Taubin, G.: A signal processing approach to fair surface design. Proceedings of ACM SIGGRAPH 1995, pp.351–358 (1995)

  28. Vollmer, J., Mencl, R., Müller, H.: Improved laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)

    Google Scholar 

  29. Wang, A., Xu, Y., Shum, H., Cohen, M.: Video tooning. ACM Trans. Graph. 23(3), 574–583 (2004)

    Google Scholar 

  30. Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. Comput. Graph. 28, 247–256 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, G., Peng, Q. & Forrest, A. Mean shift denoising of point-sampled surfaces. Visual Comput 22, 147–157 (2006). https://doi.org/10.1007/s00371-006-0372-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-006-0372-0

Keywords