Abstract
This paper presents an anisotropic denoising/smoothing algorithm for point-sampled surfaces. Motivated by the impressive results of mean shift filtering on image denoising, we extend the concept to 3D surface smoothing by taking the vertex normal and the curvature as the range component and the vertex position as the spatial component. Then the local mode of each vertex on point-based surfaces is computed by a 3D mean shift procedure dependent on local neighborhoods that are adaptively obtained by a kdtree data structure. Clustering pieces of point-based surfaces of similar local mode provides a meaningful model segmentation. Based on the adaptively clustered neighbors, we finally apply a trilateral point filtering scheme that adjusts the position of sample points along their normal directions to successfully reduce noise from point-sampled surfaces while preserving geometric features.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alexa, M.: Wiener filtering of meshes. In: Wyvill, G. (ed) Proceedings of the Shape Modeling International 2002, pp. 51–57, IEEE Computer Society, Banff, Canada (2002)
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S.: Point set surfaces. Proceedings of the Conference on Visualization ’01, pp. 21–28, IEEE Computer Society, San Diego, CA (2001)
Amenta, N., Kil, Y.: Defining Point set surfaces. ACM Trans. Graph.. 23(3), 264–270 (2004)
Bajaj, C., Xu, G.: Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph.. 22(1), 4–32 (2003)
Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Video Computing 22(1), 73–81 (2004)
Carr, J., Beatson, R., Cherrie, J., Mitchell, T.: Reconstruction and representation of 3D objects with radial basis functions. Proceedings of ACM SIGGRAPH 2001, pp. 67–76 (2001)
Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. Proceedings of Eurographics 2003, pp. 186–196, Aire-la-Ville, Switzerland (2003)
Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level vision. Proceedings of 16th International Conference on Pattern Recognition, pp. 150–155 (2002)
Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Ertl, T., Hamann, B., Varshney, A. (eds) Proceedings of IEEE Visualization 2000, pp. 397–405, Salt Lake City, UT (2000)
Clarenz, U., Rumpf, M., Telea, A: Fairing of point based surfaces. Proceedings of Computer Graphics International, June 16–19, 2004 Crete, Greece, pp. 600–603 (2004)
Comaniciu, D., Meer, P.: Mean shift analysis and applications. IEEE International Conference on Computer Vision, September 20–27, 1999, Kerkyra, Greece, pp. 1197–1203 (1999)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Patt. Anal. Mach. Intell. 24(5), 603–619 (2002)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. IEEE Conference on Computer Vision and Pattern Recognition, pp. 142–151, Hilton Head Island, SC, (2000)
Desbrun, M., Meyer, M., Schroder, P., Barr, A.: Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of SIGGRAPH99, pp. 317–324, Los Angeles, CA (1999)
Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. Proceedings of SIGGRAPH03, pp. 950–953, San Diego, CA (2003)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Proceedings of ACM SIGGRAPH 92, pp.71–78, Chicago (1992)
Hu, G., Peng, Q.: Anisotropic denoising of point-sampled models (in Chinese). J. Software 15, 215–221 (2004)
Hu, G., Peng, Q.: Bilateral estimation of normal on point-sampled models. International Conference on Computational Science and Its Applications, May 9–12, Singapore, pp. 758–768 (2005)
Hu, G., Peng, Q., Forrest, A.: Robust mesh smoothing. J Comput. Sci. Technol. 19(4), 521–528 (2004)
Jones, T., Durand, F., Desbrun, M. Non-iterative, feature preserving mesh smoothing. Proceedings of SIGGRAPH03, pp. 943–949, San Diego, CA (2003)
Lange, C., Polthier, K. Anisotropic fairing of point sets. Comput. Aid Geomet. Des. 22(7), 680–692 (2005)
Pauly, M., Gross, M.: Spectral processing of point-sampled geometry. Proceedings of ACM SIGGRAPH 2001, pp. 379–386 (2001)
Pauly, M., Gross, M., Kobblet, L.: Efficient Simplification of Point-Sampled Geometry. IEEE Visualization 02, pp. 163–170, IEEE Computer Society (2002)
Pauly, M., Keiser, R., Kobblet, L., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. 22(3), 641–650 (2003)
Peng, J., Strela, V., Zorin, D.: A simple algorithm for surface denoising. IEEE Visualization 2001, pp. 107–112, San Diego, CA (2001)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exper. Math. 2(1), 15–36 (1993)
Taubin, G.: A signal processing approach to fair surface design. Proceedings of ACM SIGGRAPH 1995, pp.351–358 (1995)
Vollmer, J., Mencl, R., Müller, H.: Improved laplacian smoothing of noisy surface meshes. Comput. Graph. Forum 18(3), 131–138 (1999)
Wang, A., Xu, Y., Shum, H., Cohen, M.: Video tooning. ACM Trans. Graph. 23(3), 574–583 (2004)
Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. Comput. Graph. 28, 247–256 (1994)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hu, G., Peng, Q. & Forrest, A. Mean shift denoising of point-sampled surfaces. Visual Comput 22, 147–157 (2006). https://doi.org/10.1007/s00371-006-0372-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-006-0372-0