Skip to main content
Log in

Enhancing the experience of 3D virtual worlds with a cartographic generalization approach

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this work we propose a new approach for fast visualization and exploration of virtual worlds based on the use of cartographic concepts and techniques. Versions of cartographic maps with different levels of details can be created by using a set of operations named cartographic generalization. Cartographic generalization employs twelve operators and domain-specific knowledge, being the contribution of this work their transposition to 3D virtual worlds. The architecture of a system for 3D generalization is proposed and the system is implemented. Differently from traditional cartographic processes, we use artificial intelligence for both selecting the key objects and applying the operators. As a case study, we present the simplification of the historical quarter of Recife (Brazil).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourdakis, V.: CAAD Towards New Design Conventions, chap. Virtual Reality: A Communication Tool for Urban Planning, pp. 45–59. Technical University of Bialystok (1997)

  2. Bourdakis, V.: Navigation in large VR urban models. In: Virtual Worlds, pp. 345–356. Springer, Berlin Heidelberg New York (1998)

  3. Bourdakis, V.: On developing standards for the creation of VR city models. In: H. Penttila (ed.) Architectural Information Management: eCAADe2001 Proceedings, pp. 404–409 (2001)

  4. Cohen-Or, D., Chrysanthou, Y., Silva, C., Durand, F.: A survey of visibility for walkthrough applications. Proceedings of EUROGRAPHICS’00, Course Notes (2000). URL http://citeseer.nj.nec.com/cohen-or00survey.html

  5. Constantinescu, Z.: Levels of detail: An overview. Nonlinear Analy. Model. Control 5, 39–52 (2000)

    MATH  Google Scholar 

  6. Erikson, C.M.: Hierarchical levels of detail to accelerate the rendering of large static and dynamic polygonal environments. Dissertation, Department of Computer Science, University of North Carolina, Chapel Hill (2000)

  7. ESRI: Automation of Map Generalization – The Cutting-Edge Technology. White Paper: Environmental Systems Research Institute, USA (1996). URL http://www.geo.ulg.ac.be/internet/Fichiers/Interet/General/Cartographie/AutoMapGenESRI.pdf

  8. Frery, A.C., Kelner, J., Moreira, J., Teichrieb, V.: Satisfaction through empathy and orientation in three-dimensional worlds. CyberPsychol. Behavior 5(5), 451–459 (2002)

    Article  Google Scholar 

  9. Frery, A.C., Rolim, C., Costa, E., Almeida, E.: Cartographic generalization in virtual reality. In: XX International Society for Photogrammetry and Remote Sensing Congress, pp. 200–205. ISPRS, Creaturk Interactive, Istanbul (2004)

  10. Glover, E., Mackaness, W.A.: Dynamic generalisation from single detailed database to support web based interaction. In: ICA/ACI 1999 Proceedings, Actes, Ottawa, Canada, pp. 1175–1183 (1999)

  11. Guéziec, A., Taubin, G., Horn, B., Lazarus, F.: A framework for streaming geometry in VRML. IEEE Comput. Graph. Appl. 19(2), 68–77 (1999)

    Article  Google Scholar 

  12. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall International Editions, Englewood Cliffs, NJ (1989)

    MATH  Google Scholar 

  13. João, E.M.: Causes and Consequences of Map Generalisation. Taylor & Francis, London (1998)

    Google Scholar 

  14. Lim, J.S.: Two-Dimensional Signal and Image Processing. Prentice Hall Signal Processing Series. Prentice Hall, Englewood Cliffs (1989)

  15. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. The Morgan Kaufmann Series in Computer Graphics. Kaufmann, San Francisco (2003)

  16. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)

    Article  Google Scholar 

  17. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 4th edn. Addison-Wesley, Boston (2001)

    Google Scholar 

  18. McMaster, R.B., Shea, K.S.: Generalization in Digital Cartography. Associaton of American Geographies, Washington (1992)

    Google Scholar 

  19. Meng, L.: Automatic Generalization of Geographic Data. Svenska Försvarsmakten (Swedish Armed Forces), Stockholm (1997)

    Google Scholar 

  20. Ramos, A.L., Nadeau, D.R., Moreland, J.L.: VRML 2.0 SourceBook, 2nd edn. Wiley, New York (1997)

    Google Scholar 

  21. Reddy, M.: A survey of level of detail support in current virtual reality solutions. Virt. Real. Res. Develop. Appl. 1(2), 85–88 (1995)

    Google Scholar 

  22. Rodriguez-Bachiller, A.: Expert Systems and Geographic Information Systems for Impact Assessment. CRC, Boca Raton, FL (2003)

    Google Scholar 

  23. Rolim, C., Frery, A.C., Costa, E., Almeida, E.: Aplicação da generalização cartográfica em realidade virtual. In: Proceedings of SVR – VI Symposium on Virtual Reality, pp. 369–371. Ribeirão Preto, SP, Brazil (2003)

  24. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, New York (2003)

    Google Scholar 

  25. Sun Microsystems, I.: The source for Java (TM) technology (2006). URL http://java.sun.com

  26. Vieira, W., Lopes, H., Tavares, G., Lewiner, T., Velho, L.: Fast stellar mesh simplification. In: Proceedings of SIBGRAPI 2003 – XVI Brazilian Symposium on Computer Graphics and Image Processing, pp. 27–34. IEEE Press, Washington, DC (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cledja Rolim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolim, C., Frery, A., Almeida, E. et al. Enhancing the experience of 3D virtual worlds with a cartographic generalization approach. Visual Comput 23, 409–418 (2007). https://doi.org/10.1007/s00371-007-0099-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0099-6

Keywords

Navigation