Skip to main content
Log in

A new image prediction model based on spatio-temporal techniques

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper addresses an image prediction problem focused on images with no identifiable objects. In it, we present several approaches to predict the next image of a given sequence, when the image lacks the well-defined objects, such as meteorological maps or satellite imagery. In these images no clear borders are present, and any object candidate moves, changes, appears and disappears in any image. Nevertheless, this evolution, though unrestricted, is gradual and, hence, prediction looks feasible. One of the approaches presented here, based on a spatio-temporal autoregressive (STAR) model, offers good results for these kinds of images.

The main contribution of this paper is to adapt spatio-temporal models to an image prediction problem.

As a byproduct of this research, we have achieved a new image compression method, suitable for images without defined shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakker, R., Schouten, J.C., Giles, C.L., Takens, F., van den Bleek, C.M.: Learning chaotic attractors. Neural Comput. 12, 2355–2383 (2000)

    Article  Google Scholar 

  2. Beichel, R., Bischof, H., Leberl, F., Sonka, M.: Robust active appearance models and their application to medical image analysis. IEEE Trans. Med. Imag. 24(9), 1151–1169 (2005)

    Article  Google Scholar 

  3. Bors, A.G., Pitas, I.: Prediction and tracking of moving objects in image sequences. IEEE Trans. Image Process. 9(8), 1441–1445 (2000)

    Article  Google Scholar 

  4. Box, G.E.P., Jenkins, F.M.: Time Series Analysis: Forecasting and Control. Holden-Day, Oakland, CA (1976)

    MATH  Google Scholar 

  5. Butcher, D., Cootes, T.F., Courtney, P., Gill, M., Lithgow, G.J.: Model-based image analysis of a model organism for life science research. In: Proceedings of 7th International Conference on Image Processing and its Applications 1(465), 392–396 (1999)

  6. Cootes, T.F., Eduards, G., Taylor, C.J.: Comparing active shape models with active appearance models. In: Proceedings of the 10th British Machine Vision Conference, pp. 173–182 (1999)

  7. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  8. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for medical image analysis and computer vision. In: Proceedings of SPIE, The International Society for Optical Engineering 4322(1), 236–248 (2001)

  9. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models: their training and application. Comput. Vis. Image Understand. 61, 38–59 (1995)

    Article  Google Scholar 

  10. Crespo, J.L.: Procesamiento paralelo y distribuido aplicado a la simulación de sistemas. Dissertation, Universidad de Cantabria (1992)

  11. Crespo, J.L., Bernardos, P., Zorrilla, M., Mora, E.: Preprocessing phase in the pietsi project (prediction of time evolution images using intelligent systems). In: 9th International Conference on Computer Aided Systems Theory: Eurocast 2003, Lecture Notes in Computer Science, vol. 2809, pp. 651–660. Springer, Berlin Heidelberg New York (2004)

  12. Crespo, J.L., Bernardos, P., Zorrilla, M., Mora, E.: Meteorological image descriptors. In: 10th International Conference on Computer Aided Systems Theory: Eurocast 2005, Lecture Notes in Computer Science, vol. 3643, pp. 101–110. Springer, Berlin Heidelberg New York (2005)

  13. Danyali, H., Mertins, A.: Flexible, highly scalable, object-based wavelet image compression algorithm for network applications. IEE Proc. Vis. Image Signal Process. 151(6), 498–510 (2004)

    Article  Google Scholar 

  14. Department of Forestry, Michigan State University: An integrated enviroment for analyzing STARMA models. http://fried.for.msu.edu/∼ieast/what-is-STARMA/STARMA-models.html. Cited (2006)

  15. Deutsch, S.J., Ramos, J.A.: Space-time modeling of vector hydrologic sequences. Water Resour. Bull. 22, 967–980 (1986)

    Google Scholar 

  16. Fahlman, S.: The recurrent cascade-correlation architecture. Tech. Rep. CMU-CS-91-00, Carnegie-Mellon University, Pittsburgh, PA (1991)

  17. Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural networks – a review. Pattern Recogn. 35, 2279–2301 (2002)

    Article  MATH  Google Scholar 

  18. Erkelens, J.S.: Autoregressive modelling for speech coding: estimation, interpolation and quantisation. Tech. Rep., Delft Center for Systems and Control at the Delft University of Technology, Delft, Netherlands (2005)

  19. Hill, A., Cootes, T.F., Taylor, C.J.: Active shape models and the shape approximation problem. Image Vis. Comput. 14(8), 601–608 (1996)

    Article  Google Scholar 

  20. Jordan, M.I.: Attractor dynamics and parallelism in a connectionnist sequential machine. In: Proceedings of the 8th Annual Conference of the Cognitive Science Study (1986)

  21. Lapedes, A., Farber, R.: Nonlinear signal processing using neural networks: prediction and system modelling. Tech. Rep. LA-UR87-2662, Los Álamos National Laboratory, NM (1987)

  22. Marshall, J.A., Srikanth, V.: Curved trajectory prediction using a self-organizing neural network. Int. J. Neural Syst. 10(1), 59–70 (2000)

    Google Scholar 

  23. Mincer, J., Zarnowitz, V.: The evaluation of economic forecasts. Economic Forecasts and Expectation, National Bureau of Economic Research, New York (1969)

  24. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, New York (1967)

    MATH  Google Scholar 

  25. Mitiche, L., Adamou-Mitiche, A.B.H., Berkani, D.: Low-order model for speech signals. Signal Process. 84(10), 1805–1811 (2004)

    Article  Google Scholar 

  26. Pace, R.K., Barry, R., Clapp, J., Rodriguez, M.: Spatio-temporal autoregressive models of neighborhood effects. J. Real Estate Finance Econ. 17(1), 15–33 (1998)

    Article  Google Scholar 

  27. Pearlmutter, B.A.: Learning state space trajectories in recurrent neural networks. Neural Comput. 1, 263–269 (1989)

    Google Scholar 

  28. Pfeifer, P.E., Deutsch, S.J.: A three-stage iterative procedure for space-time modelling. Technometrics 22(1), 35–47 (1980)

    Article  MATH  Google Scholar 

  29. Pineda, F.J.: Recurrent backpropagation and the dynamical approach to adaptive neural computation. Neural Comput. 1, 161–172 (1989)

    Google Scholar 

  30. Rao, T.S., Antunes, A.M.C.: Spatio-temporal modelling of temperature time series: a comparative study. IMA Vol. Math. Appl. 139, 123–150 (2004)

    Google Scholar 

  31. Szummer, M., Picard, R.W.: Temporal texture modelling. In: Proceedings of the 1996 IEEE International Conference on Image (1996)

  32. Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley, Boston (1993)

    Google Scholar 

  33. Williams, R.J., Zipser, D.A.: Learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Crespo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespo, J., Zorrilla, M., Bernardos, P. et al. A new image prediction model based on spatio-temporal techniques . Visual Comput 23, 419–431 (2007). https://doi.org/10.1007/s00371-007-0114-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0114-y

Keywords

Navigation