Skip to main content
Log in

The photon pipeline revisited

A hardware architecture to accelerate photon mapping

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

With the development of real-time ray tracing in recent years, it is now very interesting to ask if real-time performance can be achieved for high-quality rendering algorithms based on ray tracing. In this paper, we propose a pipelined architecture to implement reverse photon mapping. Our architecture can use real-time ray tracing to generate photon points and camera points, so the main challenge is how to implement the gathering phase that computes the final image. Traditionally, the gathering phase of photon mapping has only allowed coarse-grain parallelism, and this situation has been a source of inefficiency, cache thrashing, and limited throughput. To avail fine-grain pipelining and data parallelism, we arrange computations so that photons can be processed independently, similar to the way that triangles are efficiently processed in traditional real-time graphics hardware. We employ several techniques to improve cache behavior and to reduce communication overhead. Simulations show that the bandwidth requirements of this architecture are within the capacity of current and future hardware, and this suggests that photon mapping may be a good choice for real-time performance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abert, O., Geimer, M., Müller, S.: Direct and fast ray tracing of NURBS surfaces. In: Proceedings of IEEE Symposium on Interactive Ray Tracing 2006, pp. 161–168 (2006)

  2. Abramson, I.S.: On bandwdith variation in kernel estimates – a square root law. Ann. Stat. 10(4), 1217–1223 (1982)

    MATH  MathSciNet  Google Scholar 

  3. Akenine-Moller, T., Haines, E.: Real-time Rendering. Peters, Wellesley, MA (2002)

    Google Scholar 

  4. Chen, S.E., Rushmeier, H.E., Miller, G., Turner, D.: A progressive multi-pass method for global illumination. In: SIGGRAPH ’91: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, pp. 165–174. ACM, New York (1991)

  5. Christensen, P.H.: Faster photon map global illumination. J. Graph. Tools 4(3), 1–10 (1999)

    Google Scholar 

  6. Collins, S.: Adaptive splatting for specular to diffuse light transport. In: Proceedings of the 5th Eurographics Workshop on Rendering, pp. 119–135, June (1994)

  7. Dutre, P., Bala, K., Bekaert, P.: Advanced Global Illumination. Peters, Natick, MA (2002)

    Google Scholar 

  8. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: Memory: a memory model for scientific algorithms on graphics processors. In: SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, p. 89. ACM, New York (2006)

  9. Gray, A., Moore, A.: Rapid evaluation of multiple density models. In: Bishop, C.M., Frey, B.J. (eds.) Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics, January (2003)

  10. Havran, V.: Heuristic Ray Shooting Algorithms. Dissertation, Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, November (2000)

  11. Havran, V., Herzog, R., Seidel, H.-P.: Fast final gathering via reverse photon mapping. In: Proceedings of Eurographics 2005, vol. 24, pp. 323–333. Blackwell, Dublin, Ireland (2005)

  12. Heckbert, P.S.: Adaptive radiosity textures for bidirectional ray tracing. In: SIGGRAPH ’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–154. ACM, New York (1990)

  13. Jensen, H.W.: Global illumination using photon maps. In: Rendering Techniques ’96 (Proceedings of the 7th Eurographics Workshop on Rendering), pp. 21–30. Springer, Berlin Heidelberg New York (1996)

  14. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. Peters, Wellesley, MA (2001)

    MATH  Google Scholar 

  15. Jensen, H.W., Christensen, N.J.: Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph. 19(2), 215–224 (1995)

    Article  Google Scholar 

  16. Keller, A.: Instant radiosity. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 49–56. ACM/Addison-Wesley, New York (1997)

  17. Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: Santo, H.P. (ed.) Proceedings of 3rd International Conference on Computational Graphics and Visualization Techniques (Compugraphics ’93), pp. 145–153, Alvor, Portugal, December (1993)

  18. Larsen, B.D., Christensen, N.J.: Simulating photon mapping for real-time applications. In: Keller, A., Jensen, H.W. (eds.) Rendering Techniques, pp. 123–132. Eurographics Association, Aire-la-Ville, Switzerland (2004)

  19. Lavignotte, F., Paulin, M.: Scalable photon splatting for global illumination. In: GRAPHITE ’03: Proceedings of the 1st International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, pp. 203–210. ACM, New York (2003)

  20. Ma, V.C.H., McCool, M.D.: Low latency photon mapping using block hashing. In: HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 89–99. Eurographics Association, Aire-la-Ville, Switzerland (2002)

  21. MacDonald, J.D., Booth, K.S.: Heuristics for ray tracing using space subdivision. Vis. Comput. 6(3), 153–166 (1990)

    Article  Google Scholar 

  22. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel rendering. IEEE Comp. Graph. Appl. 14, 23–31 (1994)

    Article  Google Scholar 

  23. NVIDIA CUDA: Programming guide, version 0.8 (2007)

  24. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  25. Purcell, T.J., Donner, C., Cammarano, M., Jensen, H.W., Hanrahan, P.: Photon mapping on programmable graphics hardware. In: HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 41–50. Eurographics Association, Aire-la-Ville, Switzerland (2003)

  26. Reinhard, E., Chalmers, A., Jansen, F.W.: Overview of parallel photo-realistic graphics. Technical Report CS-EXT-1998-147, 1 (1998)

  27. Shirley, P., Wade, B., Hubbard, P.M., Zareski, D., Walter, B., Greenberg, D.H.P. Global illumination via density estimation. In: Hanrahan, P.M., Purgathofer, W. (eds.) Rendering Techniques ’95, pp. 219–230. Springer, Berlin Heidelberg New York (1995)

  28. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1985)

    Google Scholar 

  29. Singh, S.: The photon pipeline. In: GRAPHITE ’06: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 333–340. ACM, New York (2006)

  30. Steinhurst, J.: Dissertation, University of North Carolina (2007)

  31. Steinhurst, J., Coombe, G., Lastra, A.: Reordering for cache conscious photon mapping. In: GI ’05: Proceedings of the 2005 Conference on Graphics Interface, pp. 97–104. Canadian Human-Computer Communications Society (2005)

  32. Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Ann. Stat. 20(3), 1236–1265 (1992)

    MATH  MathSciNet  Google Scholar 

  33. Wald, I.: Realtime Ray Tracing and Interactive Global Illumination. Dissertation, Computer Graphics Group, Saarland University (2004) Available at http://www.mpi-sb.mpg.de/wald/PhD/

  34. Wald, I., Kollig, T., Benthin, C., Keller, A., Slusallek, P.: Interactive global illumination using fast ray tracing. In: Proceedings of the 13th EUROGRAPHICS Workshop on Rendering. Saarland University, Kaiserslautern University (2002)

  35. Wald, I., Slusallek, P.: State of the art in interactive ray tracing. In: State of the Art Reports, EUROGRAPHICS 2001, pp. 21–42. Eurographics, Manchester, UK (2001)

  36. Woop, E.B.S., Slusallek, P.: Estimating performance of a ray-tracing asic design. In: Proceedings of IEEE Symposium on Interactive Ray Tracing (2006)

  37. Woop, S., Schmittler, J., Slusallek, P.: Rpu: a programmable ray processing unit for realtime ray tracing. ACM Trans. Graph. 24(3), 434–444 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Faloutsos, P. The photon pipeline revisited. Visual Comput 23, 479–492 (2007). https://doi.org/10.1007/s00371-007-0123-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0123-x

Keywords

Navigation