Skip to main content
Log in

Conservative voxelization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a novel hardware-accelerated voxelization algorithm for polygonal models. Compared with previous approaches, our algorithm has a major advantage that it guarantees the conservative correctness in voxelization: every voxel intersecting the input model is correctly recognized. This property is crucial for applications like collision detection, occlusion culling and visibility processing. We also present an efficient and robust implementation of the algorithm in the GPU. Experiments show that our algorithm has a lower memory consumption than previous approaches and is more efficient when the volume resolution is high. In addition, our algorithm requires no preprocessing and is suitable for voxelizing deformable models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akenine-Möller, T., Aila, T.: Conservative and tiled rasterization using a modified triangle set-up. ACM J. Graph. Tools 10(3), 1–8 (2005)

    Google Scholar 

  2. Beckhaus, S., Wind, J., Strothotte, T.: Hardware-based voxelization for 3D spatial analysis. In: Proceedings of the 5th International Conference on Computer Graphics and Imaging, pp. 15–20. ACTA Press, Canmore, Alberta, Canada (2002)

  3. Boyles, M., Fang, S.: Slicing-based volumetric collision detection. ACM J. Graph. Tools 4(4), 23–32 (2000)

    Google Scholar 

  4. Chen, H., Fang, S.: Fast voxelization of 3D synthetic objects. ACM J. Graph. Tools 3(4), 33–45 (1999)

    Google Scholar 

  5. Dong, Z., Chen, W., Bao, H., Zhang, H., Peng, Q.: Real-time voxelization for complex polygonal models. In: Proceedings of Pacific Graphics 2004, pp. 43–50, IEEE Comput. Graph. Soc. Press (2004)

  6. Eisemann, E., Décoret, X.: Fast scene voxelization and applications. In: Proceedings of 2006 Symposium on Interactive 3D Graphics and Games, pp. 71–78. ACM Press, New York (2006)

  7. Everitt, C.: Interactive order-independent transparency. Technical report, NVIDIA Corporation (2001)

  8. Fang, S., Chen, H.: Hardware accelerated voxelization. Comput. Graph. 24(3), 433–442 (2000)

    Article  Google Scholar 

  9. Gagvani, N., Silver, D.: Shape-based volumetric collision detection. In: Proceedings of the IEEE Symposium on Volume Visualization 2000, pp. 57–61. ACM Press, New York (2000)

  10. Harris, M., Buck, I.: GPU flow-control idioms. GPU Gems II 34, 547–555 (2005)

    Google Scholar 

  11. Hasselgren, J., Akenine-Möller, T., Ohlsson, L.: Conservative rasterization. GPU Gems II 42, 677–690 (2005)

    Google Scholar 

  12. He, T., Kaufman, A.: Collision detection for volumetric objects. In: Proceedings of IEEE Visualization 1997, pp. 27–35. IEEE Computer Society Press, New York (1997)

  13. Heidelberger, B., Teschner, M., Gross, M.: Volumetric collision detection for deformable objects. Technical Report No.395, Institute of Scientific Computing, ETH Zürich (2003)

  14. Karabassi, E.A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. ACM J. Graph. Tools 4(4), 5–10 (1999)

    Google Scholar 

  15. Kaufman, A., Shimony, E.: 3D scan-conversion algorithms for voxel-based graphics. In: Proceedings of ACM Workshop on Interactive 3D Graphics, pp. 45–76. ACM Press, Chapel Hill, NC (1986)

  16. Kreeger, K., Kaufman, A.: Mixing translucent polygons with volumes. In: Proceedings of IEEE Visualization 1999, pp. 191–198. (1999)

  17. Li, W., Fan, Z., Wei, X., Kaufman, A.: Flow simulation with complex boundaries. GPU Gems II 47, 677–690 (2005)

    Google Scholar 

  18. McNeely, W., Puterbaugh, K., Troy, J.: Six degree-of-freedom haptic rendering using voxel sampling. In: Proceedings of ACM SIGGRAPH 1999, pp. 401–408 (1999)

  19. NVIDIA Corporation: Cg Specification (2006)

  20. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1992)

    Google Scholar 

  21. Wang, S., Kaufman, A.: Volume sampled voxelization of geometric primitives. In: Proceedings of IEEE Visualization 1993, pp. 78–84. IEEE Computer Society Press (1993)

  22. Wang, S., Kaufman, A.: Volume-sampled 3D modeling. IEEE Comput. Graph. Appl. 14(5), 26–32 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Chen, W., Ebert, D. et al. Conservative voxelization . Visual Comput 23, 783–792 (2007). https://doi.org/10.1007/s00371-007-0149-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0149-0

Keywords

Navigation