Abstract
We propose a new method for 3D shape metamorphosis, where the in-between objects are constructed by using T-spline scalar functions. The use of T-spline level sets offers several advantages: First, it is convenient to handle complex topology changes without the need of model parameterization. Second, the constructed objects are smooth (C2 in our case). Third, high quality meshes can be easily obtained by using the marching triangulation method. Fourth, the distribution of the degrees of freedom can be adapted to the geometry of the object.
Given one source object and one target object, we firstly find a global coordinate transformation to approximately align the two objects. The T-spline control grid is adaptively generated according to the geometry of the aligned objects, and the initial T-spline level set is found by approximating the signed distance function of the source object. Then we use an evolution process, which is governed by a combination of the signed distance function of the target object and a curvature-dependent speed function, to deform the T-spline level set until it converges to the target shape. Additional intermediate objects are inserted at the beginning/end of the sequence of generated T-spline level sets, by gradually projecting the source/target object to the initial/final T-spline level set. A fully automatic algorithm is developed for the above procedures. Experimental results are presented to demonstrate the effectiveness of our method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alexa, M.: Recent advances in mesh morphing. Comput. Graph. Forum 21(2), 173–197 (2002)
Bao, H., Peng, Q.: Interactive 3D morphing. Comput. Graph. Forum 17(3), 23–30 (1998)
Bao, Y., Guo, X., Qin, H.: Physically based morphing of point-sampled surfaces: animating geometrical models. Comput. Animat. Virtual Worlds 16(3–4), 509–518 (2005)
Beier, T., Neely, S.: Feature-based image metamorphosis. In: Proceedings of SIGGRAPH’92, pp. 35–42. ACM Press, New York, NY (1992)
Botsch, M., Bommes, D., Kobbelt, L.: Efficient linear system solvers for mesh processing. In: Martin, R., Bez, H., Sabin, M. (eds.) Mathematics of Surfaces XI. LNCS, vol. 3604, pp. 62–83. Springer, Berlin (2005)
Breen, D.E., Whitaker, R.T.: A level-set approach for the metamorphosis of solid models. IEEE Trans. Vis. Comput. Graph. 7(2), 173–192 (2001)
Chen, M., Jones, M.W., Townsend, P.: Volume distortion and morphing using disk fields. Comput. Graph. 20(4), 567–575 (1996)
Cohen-Or, D., Solomovic, A., Levin, D.: Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17(2), 116–141 (1998)
Galin, E., Akkouche, S.: Blob metamorphosis based on Minkowski sums. Comput. Graph. Forum (Eurographics’96) 15(3), 143–152 (1996)
Hartmann, E.: A marching method for the triangulation of surfaces. Vis. Comput. 14(3), 95–108 (1998)
He, T., Wang, S., Kaufman, A.: Wavelet-based volume morphing. In: Proceedings of VIS’94, pp. 85–92. IEEE Computer Society Press, Los Alamitos, CA (1994)
Hughes, J.F.: Scheduled Fourier volume morphing. In: Proceedings of SIGGRAPH’92, pp. 43–46. ACM Press, New York, NY (1992)
Jin, X., Liu, S., Wang, C.L., Feng, J., Sun, H.: Blob-based liquid morphing. J. Vis. Comput. Animat. 16(3–4), 391–403 (2005)
Kanai, T., Suzuki, H., Kimura, F.: Metamorphosis of arbitrary triangular meshes. IEEE Comput. Graph. Appl. 20(2), 62–75 (2000)
Kaul, A., Rossignac, J.: Solid-interpolating deformations: construction and animation of PIPS. In: Proceedings of Eurographics’91, pp. 493–505. Elsevier Science Publishers, Vienna, Austria (1991)
Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. (SIGGRAPH’04) 23(3), 861–869 (2004)
Lazarus, F., Verroust, A.: Three-dimensional metamorphosis: a survey. Vis. Comput. 14(8–9), 373–389 (1998)
Lee, T.Y., Yao, C.Y., Chu, H.K., Tai, M.J., Chen, C.C.: Generating genus-n-to-m mesh morphing using spherical parameterization. J. Vis. Comput. Animat. 17(3–4), 433–443 (2006)
Lerios, A., Garfinkle, C.D., Levoy, M.: Feature-based volume metamorphosis. In: Proceedings of SIGGRAPH’95, pp. 449–456. ACM Press, New York, NY (1995)
Nieda, T., Pasko, A., Kunii, T.L.: Detection and classification of topological evolution for linear metamorphosis. Vis. Comput. 22(5), 346–356 (2006)
Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function representation in geometric modeling: concepts, implementation and applications. Vis. Comput. 11(8), 429–446 (1995)
Payne, B., Toga, A.: Distance field manipulation of surface models. IEEE Comput. Graph. Appl. 12(1), 65–71 (1992)
Rossignac, J., Kaul, A.: AGRELS and BIBs: metamorphosis as a Bézier curve in the space of polyhedra. In: Proceedings of Eurographics’94, pp. 179–184. Elsevier Science Publishers, Oslo, Norway (1994)
Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)
Shoemake, K.: Animating rotation with quaternion curves. In: Proceedings of SIGGRAPH’85, pp. 245–254. ACM Press, New York, NY (1985)
Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proceedings of SIGGRAPH’99, pp. 335–342. ACM Press, New York, NY (1999)
Yan, H.B., Hu, S.M., Martin, R.: 3D morphing using strain field interpolation. J. Comput. Sci. Technol. 22(1), 147–155 (2007)
Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. Technical Report 01, http://www.ig.jku.at. Cited (2005)
Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: Proceedings of SMI’06, pp. 247–252. IEEE Computer Society Press, Matsushima, Japan (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, H., Jüttler, B. 3D shape metamorphosis based on T-spline level sets. Visual Comput 23, 1015–1025 (2007). https://doi.org/10.1007/s00371-007-0168-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-007-0168-x