Abstract
Mesh partitioning and skeletonisation are fundamental for many computer graphics and animation techniques. Because of the close link between an object’s skeleton and its boundary, these two problems are in many cases complementary. Any partitioning of the object can assist in the creation of a skeleton and any segmentation of the skeleton can infer a partitioning of the object. In this paper, we consider these two problems on a wide variety of meshes, and strive to construct partitioning and skeletons which remain consistent across a family of objects, not a single one. Such families can consist of either a single object in multiple poses and resolutions, or multiple objects which have a general common shape. To achieve consistency, we base our algorithms on a volume-based shape-function called the shape-diameter-function (SDF), which remains largely oblivious to pose changes of the same object and maintains similar values in analogue parts of different objects. The SDF is a scalar function defined on the mesh surface; however, it expresses a measure of the diameter of the object’s volume in the neighborhood of each point on the surface. Using the SDF we are able to process and manipulate families of objects which contain similarities using a simple and consistent algorithm: consistently partitioning and creating skeletons among multiple meshes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19(2,3), 127–153 (2001)
Attene, M., Biasotti, S., Spagnuolo, M.: Shape understanding by contour-driven retiling. Visual Comput. 19(2,3), 127–138 (2003)
Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Visual Comput. 22(3), 181–193 (2006)
Choi, H., Choi, S., Moon, H.: Mathematical theory of medial axis transform. Pac. J. Math. 181(1), 57–88 (1997)
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)
Cox, M., Cox, T.: Multidimensional Scaling. Chapman and Hall, London (1994)
Dasgupta, S.: Learning mixtures of gaussians. Tech. Rep. UCB/CSD-99-1047, EECS Department, University of California, Berkeley (1999)
Dey, T., Giesen, J., Goswami, S.: Shape segmentation and matching with flow discretization. In: Proceedings of the Workshop on Algorithms and Data Structures (WADS 03). Lect. Notes Comput. Sci., vol. 2748, pp. 25–36. Springer, Berlin/Heidelberg (2003)
Dey, T.K., Zhao, W.: Approximating the medial axis from the voronoi diagram with a convergence guarantee. In: Algorithms - ESA 2002: 10th Annual European Symposium, pp. 387–398. Springer, Heidelberg (2002)
Gelfand, N., Guibas, L.J.: Shape segmentation using local slippage analysis. In: SGP’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 214–223. ACM Press, New York, NY, USA (2004)
Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer graphics and Interactive Techniques (SIGGRAPH ’01), pp. 203–212. ACM, New York, NY (2001)
Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Visual Comput. (Pac. Graph.) 21(8–10), 865–875 (2005)
Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. (Proceedings SIGGRAPH 2003) 22(3), 954–961 (2003)
Kraevoy, V., Julius, D., Sheffer, A.: Shuffler: Modeling with interchangeable parts. Visual Comput. (2007) (to appear)
Lee, I.K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17(2), 161–177 (2000)
Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Intelligent mesh scissoring using 3D snakes. In: Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, pp. 279–287. IEEE Computer Society, Washington DC (2004)
Levin, D.: The approximation power of moving least-squares. Math. Comput. 67(224), 1517–1531 (1998)
Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. In: SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry, pp. 17–26. ACM Press, New York, NY, USA (2004)
Lien, J.M., Amato, N.M.: Simultaneous shape decomposition and skeletonization. Tech. rep., Texas AM University (2005)
Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: The 12th Pacific Conference on Computer Graphics and Applications (PG’04), pp. 298–305. IEEE Computer Society, Seoul (2004)
Mangan, A., Whitaker, R.: Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput. Graph. 5(4), 308–321 (1999)
Mortara, M., Patanè, G.: Shape-covering for skeleton extraction. Int. J. Shape Modeling 8(2), 139–158 (2002)
Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1), 227–248 (2003)
Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. ACM Trans. Graph. 23(3), 613–622 (2004)
Page, D., Abidi, M., Koschan, A., Zhang, Y.: Object representation using the minima rule and superquadrics for under vehicle inspection. In: Proceedings of the 1st IEEE Latin American Conference on Robotics and Automation, pp. 91–97 (2003)
Page, D., Koschan, A., Abidi, M.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Conference on Computer Vision and Pattern Recognition (CVPR ’03) – Volume II, pp. 27–32. IEEE Computer Society, Los Alamitos, CA (2003)
Shamir, A.: Segmentation and shape extraction of 3D boundary meshes. In: State-of-the-Art Report, Proceedings Eurographics 2006, The Eurographics Association (2006)
Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Comput. Graph. Forum 21(3) (2002) (Proceedings Eurographics 2002)
Svensson, S., di Baja, G.S.: Using distance transforms to decompose 3d discrete objects. Image Vis. Comput. 20(8), 529–540 (2002)
Tierny, J., Vandeborre, J.P., Daoudi, M.: 3d Mesh Skeleton Extraction Using Topological and Geometrical Analyses. In: 14th Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2006), pp. 85–94. Taipei, Taiwan (2006) (URL http://www.lifl.fr/∼tierny/pacific06.html)
Tierny, J., Vandeborre, J.P., Daoudi, M.: Topology driven 3D mesh hierarchical segmentation. In: IEEE International Conference on Shape Modeling and Applications (SMI’2007). IEEE, Lyon (2007) (URL http://www.lifl.fr/∼tierny/smi07.html)
Verroust, A., Lazarus, F.: Extracting skeletal curves from 3D scattered data. Visual Comput. 16(1), 15–25 (2000) (URL citeseer.ist.psu.edu/verroust97extracting.html)
Vlassis, N., Likas, A.: A greedy EM algorithm for Gaussian mixture learning. Neural Process. Lett. 15(1), 77–87 (2002) (URL citeseer.ist.psu.edu/article/vlassis00greedy.html)
Wu, F.C., Ma, W.C., Liang, R.H., Chen, B.Y., Ouhyoung, M.: Domain connected graph: the skeleton of a closed 3d shape for animation. Visual Comput. 22(2), 117–135 (2006)
Zabih, R., Kolmogorov, V.: Spatially coherent clustering using graph cuts. cvpr 02, 437–444 (2004) (DOI http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.238)
Zhu, S.C., Yuille, A.L.: Forms: A flexible object recognition and modeling system. Int. J. Comput. Vis. 20(3), 187–212 (1996)
Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 26(5), 733–743 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shapira, L., Shamir, A. & Cohen-Or, D. Consistent mesh partitioning and skeletonisation using the shape diameter function. Visual Comput 24, 249–259 (2008). https://doi.org/10.1007/s00371-007-0197-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-007-0197-5