Skip to main content
Log in

Inversion handling for stable deformable modeling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In 3D deformable modeling approaches based on FEM, inverted tetrahedral elements can cause undesired visual artifacts and the breakdown of the simulation. As inversion can never be avoided and sometimes is even the correct behavior of elements, there is a strong need for stable inversion handling. In this paper, we propose a novel method to resolve inverted elements which is motivated by previous work of Irving et al. [6]. In combination with an efficient handling of degenerated elements, our approach yields a stable simulation of arbitrary deformations. Although we focus on the corotational formulation of linear FEM, the method can be implemented within arbitrary constitutive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen, D., Zeltzer, D.: Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. In: Proceedings of ACM SIGGRAPH, pp. 89–98. ACM, New York (1992)

    Chapter  Google Scholar 

  2. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space & time adaptive sampling. In: Proc. 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM SIGGRAPH, pp. 31–36. ACM, New York (2001)

    Chapter  Google Scholar 

  3. Escobar, J.M., Rodríguez, E., Montenegro, R., Montenero, G., González-Yuste, J.M.: Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 192, 2775–2787 (2003)

    Article  MATH  Google Scholar 

  4. Espinosa, H., Zavattieri, P., Emore, G.: Adaptive FEM computation of geometric and material nonlinearities with application to brittle fracture. Mech. Mater. 29, 275–305 (1998)

    Article  Google Scholar 

  5. Hauth, M., Strasser, W.: Corotational simulation of deformable solids. J. WSCG 12, 137–145 (2004)

    Google Scholar 

  6. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 131–140. Eurographics Association, Aire-la-Ville, Switzerland (2004)

    Chapter  Google Scholar 

  7. Kanatani, K.: Analysis of 3-D rotation fitting. IEEE Trans. Pattern Anal. Mach. Intell. 16, 543–549 (1994)

    Article  Google Scholar 

  8. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real time deformations. In: Proceedings of ACM SIGGRAPH Symposium on Computer Animation, pp. 49–54. ACM, New York (2002)

    Chapter  Google Scholar 

  9. Müller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface, pp. 239–246. Canadian Human-Computer Communication Society, Waterloo, Ontario, Canada (2004)

    Google Scholar 

  10. Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. In: Proceedings of ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques, pp. 471–478. ACM, New York (2005)

    Google Scholar 

  11. O’Brian, J., Bargteil, A., Hodgins, J.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH) 21, 291–294 (2002)

    Google Scholar 

  12. O’Brian, J., Hodgins, J.: Graphical modeling and animation of brittle fracture. In: Proceedings of ACM SIGGRAPH, vol. 18, pp. 137–146. ACM Press/Addison-Wesley Publishing Co. (1999)

  13. Picinbono, G., Delingette, H., Ayache, N.: Non-linear and anisotropic elastic soft tissue models for medical simulation. In: IEEE Int. Conf. Robotics and Automation, pp. 1370–1375. IEEE (2001)

  14. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of ACM SIGGRAPH, pp. 205–214. ACM, New York (1987)

    Google Scholar 

  15. Teschner, M., Heidelberger, B., Müller, M., Gross, M.: A versatile and robust model for geometrically complex deformable solids. In: Proc. Computer Graphics International, pp. 312–319. IEEE Computer Society, Washington, DC (2004)

    Chapter  Google Scholar 

  16. Vachal, P., Garimella, R.V., Shashkov, M.J.: Untangling of 2D meshes in ALE simulations. J. Comput. Phys. 196, 627–644 (2004)

    Article  MATH  Google Scholar 

  17. Zieliński, P., Zio̧tak, K.: The polar decomposition – properties, applications and algorithms. Mat. Stosow. 38, 23–40 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruediger Schmedding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmedding, R., Teschner, M. Inversion handling for stable deformable modeling. Visual Comput 24, 625–633 (2008). https://doi.org/10.1007/s00371-008-0243-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0243-y

Keywords

Navigation